Die transkranielle optische Bildgebung ermöglicht eine Großfeld-Bildgebung des Zerebrospinalflüssigkeitstransports im Kortex lebender Mäuse durch einen intakten Schädel.
Der Fluss von Cerebrospinalflüssigkeit (CSF) bei Nagetieren wurde weitgehend mit Hilfe der Ex-vivo-Quantifizierung von Tracern untersucht. Techniken wie die Zweiphotonenmikroskopie und die Magnetresonanztomographie (MRT) haben die In-vivo-Quantifizierung des CSF-Flusses ermöglicht, sind aber durch reduzierte Bildgebungsvolumina bzw. geringe räumliche Auflösung begrenzt. Jüngste Arbeiten haben herausgefunden, dass CSF durch ein Netzwerk von perivaskulären Räumen, die die pialen und durchdringenden Arterien des Nagetierkortex umgeben, in das Gehirn parenchym eintritt. Dieser perivaskuläre Eintrag von CSF ist ein Primärtreiber des glymphatischen Systems, ein Weg, der in die Clearance toxischer Stoffwechselsolutes (z. B. Amyloid-B) involviert ist. Hier zeigen wir eine neue makroskopische Bildgebungstechnik, die eine mesoskopische Bildgebung fluoreszierender CSF-Tracer durch den intakten Schädel lebender Mäuse in Echtzeit ermöglicht. Diese minimal-invasive Methode ermöglicht eine Vielzahl experimenteller Konstruktionen und ermöglicht ein- oder wiederholtes Testen der CSF-Dynamik. Makroskope haben eine hohe räumliche und zeitliche Auflösung und ihre große Portal- und Arbeitsdistanz ermöglicht die Bildgebung bei der Ausführung von Aufgaben auf Verhaltensgeräten. Dieser bildgebende Ansatz wurde anhand von Zwei-Photonen-Bildgebungs- und Fluoreszenzmessungen validiert, die aus dieser Technik gewonnen wurden, und korrelieren stark mit Ex-vivo-Fluoreszenz und Quantifizierung von radiomarkierten Tracern. In diesem Protokoll beschreiben wir, wie transkranielle makroskopische Bildgebung zur Bewertung des glymphatischen Transports bei lebenden Mäusen verwendet werden kann, was eine zugängliche Alternative zu teureren bildgebenden Verfahren bietet.
Cerebrospinalflüssigkeit (CSF) badet das Gehirn und Rückenmark und ist an der Aufrechterhaltung der Homöostase beteiligt, Die Versorgung mit Nährstoffen, und Regulierung des intrakraniellen Drucks1. CSF im subarachnoiden Raum gelangt durch ein Netzwerk perivaskulärer Räume (PVS) um kortikale piale Arterien in das Gehirn und fließt dann entlang eindringender Arterioles2. Einmal im Parenchym, CSF-Austausch mit interstitiellen Flüssigkeit (ISF), tragen schädliche Metaboliten wie Amyloid-A (A) und Tau-Protein-Aggregate aus dem Gehirn durch niedrigen Widerstand weiße Materie-Trakte und perivenous Räume2,3 . Dieser Weg ist abhängig von astroglialen Aquaporin-4 (AQP4) Kanälen und wurde daher als das glial-lymphatische (glymphatische) System4bezeichnet. Abfallprodukte des Neuropils werden schließlich durch Lymphgefäße in der Nähe von Hirnnerven und in den Hirnhäusten in Richtung der zervikalen Lymphknoten5von der CSF-ISF befreit. Das Versagen dieses Systems wurde in mehrere neurologische Erkrankungen wie Alzheimer-Krankheit6,7, traumatische Hirnverletzung3, und ischämischen und hämorrhagischen Schlaganfall8verwickelt.
DER CSF-Transport kann durch Infundieren von Tracern indie Zisternenmagna (CM) 9,10 und glymphatische Studien in der Vergangenheit hauptsächlich zweiphotonenmikroskopische4,11,12, 13, Magnetresonanztomographie (MRT)14,15,16,17und ex vivo Imaging3,6,11, 18 zur Auswertung der Tracer-Kinetik. Die Zwei-Photonen-Mikroskopie ist aufgrund ihrer hohen räumlichen Auflösung ein geeignetes Verfahren zur detaillierten Abbildung von CSF-Spuren in PVS und dem Parenchym, allerdings hat sie ein schmales Sichtfeld und erfordert ein invasives Schädelfenster oder eine Ausdünnung des Schädels. Ex-vivo-Bildgebung in Kombination mit Immunhistochemie ermöglicht mehrstufige Analysen von Einzelzellen bis zum gesamten Gehirn19. Der Prozess der Perfusionsfixierung, der zur Beobachtung des postmortalen Gewebes erforderlich ist, führt jedoch zu tiefgreifenden Veränderungen in der CSF-Flussrichtung und reduziert die PVS, wodurch die Verteilung und die Position der Tracer erheblich verändert werden12. Schließlich, während MRT CSF-Fluss im gesamten murine und menschlichen Gehirn verfolgen kann, fehlt es ihm an räumlicher und zeitlicher Auflösung des perivaskulären Flusses.
Eine neue Technik, die transkranielle makroskopische Bildgebung, löst einige dieser Einschränkungen, indem sie eine Großfeld-Bildgebung des perivaskulären CSF-Transports im gesamten dorsalen Kortex lebender Mäuse ermöglicht. Diese Art der Bildgebung erfolgt mit einem epifluoreszierenden Makroskop mit einem Multiband-Filterwürfel, einer abstimmbaren LED-Lichtquelle und einer hocheffizienten CMOS-Kamera10. Diese Setups sind in der Lage, PVS bis zu 1-2 mm unter der Schädeloberfläche aufzulösen und fluorophore bis zu 5-6 mm unter der kortikalen Oberfläche zu erkennen, während der Schädel vollständig intaktbleibt 10. Multibandfilter und LEDs, die die Anregungswellenlänge schnell optimieren können, ermöglichen die Verwendung mehrerer Fluorophore, sodass CSF im selben Experiment mit Tracern unterschiedlicher Molekulargewichte und chemischer Eigenschaften gekennzeichnet werden kann.
Dieses Verfahren erfordert eine einfache, minimal-invasive Operation, um den Schädel freizulegen und eine leichte Kopfplatte zu platzieren, um den Kopf während der Bildgebungssitzung zu stabilisieren. Tracer können in den CM geliefert werden, ohne in den Schädel zu bohren oder das kortikale Gewebe mit Pipetten oder Kanülen9,20zu durchdringen. Sowohl CM-Kanülen als auch Kopfplatten bleiben für mehrere Tage bis Wochen stabil und ermöglichen komplexere experimentelle Designs im Vergleich zur klassischen Endpunktvisualisierung. Dieses Protokoll beschreibt, wie transkranielle makroskopische Bildgebung verwendet wird, um die funktionale glymphatische Systemfunktion nach akuter oder chronischer Injektion von fluoreszierendem CSF-Tracer in den CM von anästhesierten/schlafenden oder wachen Mäusen zu untersuchen.
Wir haben ein detailliertes Protokoll für die Durchführung transkranieller CSF-Bildgebung bei lebenden Mäusen mit kommerziell erhältlichen fluoreszierenden Makroskopen und Tracern beschrieben. Diese Technik ist einfach und minimal-invasiv, aber quantitativ. Die In-vivo-Bildgebung korreliert gut mit empfindlichen Methoden wie der Flüssigszintillationszählung von radiomarkierten Tracern, einschließlich 3H-Dextran und 14C-Inulin nach CM-Verabreichung, und mit ex vivo koronaler Schnittquantifizie…
The authors have nothing to disclose.
Diese Arbeit wurde vom National Institute of Neurological Disorders and Stroke und dem National Institute on Aging (US National Institutes of Health; R01NS100366 und RF1AG057575 an MN), das Programm “Fondation Leducq Transatlantic Networks of Excellence” und das Forschungs- und Innovationsprogramm EU Horizon 2020 (Zuschuss Nr. 666881; SVDs-Ziel). Wir danken Dan Xue auch für die fachkundige Unterstützung bei grafischen Illustrationen.
0.25% Bupivacaine HCl | University of Rochester Vivarium | ||
100 µL Gastight Syringe Model 1710 TLL, PTFE Luer Lock | Hamilton Company | 81020 | |
A-M Systems Dental Cement Powder | Fisher Scientific | NC9991371 | |
Carprofen | University of Rochester Vivarium | ||
Chlorhexidine | Prevantics | B10800 | |
CMOS Camera | Hammamatsu | ORCA Flash 4.0 | |
Head Plate | University of Rochester | No catalog # | Custom made at the machine shop at the University of Rochester |
High-Temperature Cautery | Bovie Medical Corporation | AA01 | |
Insta-set Accelerator | Bob Smith Industries | BSI-151 | |
Isoflurane – Fluriso | Vet One | 502017 | University of Rochester Vivarium |
Ketamine | Strong Memorial Hospital Pharmacy | ||
Krazy Glue | Elmer's Products, Inc | No catalog #, see link in comments | https://www.amazon.com/Krazy-Glue-KG48348MR-Advance-Multicolor/dp/B000BKO6DG |
Micropore Surgical tape | Fisher Scientific | 19-027-761 | |
Paraformaldehyde | Sigma-aldrich | P6148 | |
PE10 – Polyethylene .011" x .024" per ft., 100 ft. continuous | Braintree Scientific | PE10 100 FT | |
Pump 11 Elite Infusion Only Dual Syringe | Harvard Apparatus | 70-4501 | |
PURALUBE VET OINTMENT | Dechra | ||
Puritan PurSwab Cotton Tipped Cleaning Sticks | Fisher Scientific | 22-029-553 | |
Research Macro Zoom Microscope | Olympus | MVX10 | |
Simple Head Holder Plate (for mice) | Narishige International USA Inc | MAG-1 | |
Single-use Needles, BD Medical | VWR | BD305106 | |
Sterile Alcohol Prep Pads | Fisher Scientific | 22-363-750 | |
Tunable LED | PRIOR Lumen 1600-LED | ||
Xylazine | University of Rochester Vivarium |