Las imágenes ópticas transcraneales permiten imágenes de campo amplio del transporte de líquido cefalorraquídeo en la corteza de ratones vivos a través de un cráneo intacto.
El flujo de líquido cefalorraquídeo (LCR) en roedores se ha estudiado en gran medida utilizando la cuantificación ex vivo de los trazadores. Técnicas como la microscopía de dos fotones y la resonancia magnética (RM) han permitido la cuantificación in vivo del flujo de LSN, pero están limitadas por la reducción de los volúmenes de imágenes y la baja resolución espacial, respectivamente. Trabajos recientes han encontrado que el LCH entra en el parénquima cerebral a través de una red de espacios perivasculares que rodean las arterias pial y penetrantes de la corteza de roedores. Esta entrada perivascular del LIF es un factor principal del sistema ginfotico, una vía implicada en el aclaramiento de solutos metabólicos tóxicos (p. ej., amiloide). Aquí, ilustramos una nueva técnica de imagen macroscópica que permite imágenes mesoscópicas en tiempo real de trazadores fluorescentes de CSF a través del cráneo intacto de ratones vivos. Este método mínimamente invasivo facilita una multitud de diseños experimentales y permite realizar pruebas únicas o repetidas de la dinámica del CSF. Los macroscopios tienen una alta resolución espacial y temporal y su gran pórtico y distancia de trabajo permiten la creación de imágenes mientras realizan tareas en dispositivos de comportamiento. Este enfoque de imagen ha sido validado utilizando mediciones de imágenes y fluorescencia de dos fotones obtenidas a partir de esta técnica se correlacionan fuertemente con la fluorescencia ex vivo y la cuantificación de trazadores radiomarcados. En este protocolo, describimos cómo se pueden utilizar imágenes macroscópicas transcraneales para evaluar el transporte ginfogático en ratones vivos, ofreciendo una alternativa accesible a las modalidades de imagen más costosas.
El líquido cefalorraquídeo (LCR) baña el cerebro y la médula espinal y participa en el mantenimiento de la homeostasis, el suministro de nutrientes y la regulación de la presión intracraneal1. El LESO en el espacio subaracnoideo entra en el cerebro a través de una red de espacios perivasculares (PVS) que rodean las arterias cortales corticales y luego fluye a lo largo de las arterias penetrantes2. Una vez en el parénquima, el Líquido Cefalrea (CSF) intercambia con fluido intersticial (ISF), llevando metabolitos nocivos como el amiloide y los agregados de proteína tau del cerebro a través de vías de materia blanca de baja resistencia y espacios peligrosos2,3 . Esta vía depende de los canales astrogliales de la aquaporina-4 (AQP4) y, por lo tanto, se ha llamado el sistema glial-linfático (ginfotico)4. Los productos de desecho del neuropil se eliminan en última instancia del LIF-ISF a través de vasos linfáticos cerca de los nervios craneales y en las meninges hacia los ganglios linfáticos cervicales5. El fallo de este sistema ha estado implicado en varias enfermedades neurológicas como la enfermedad de Alzheimer6,7, lesión cerebral traumática3,y accidente cerebrovascular isquémico y hemorrágico8.
El transporte del LSCa se puede visualizar infundiendo marcadores en la cisterna magna (CM)9,10 y estudios glinfoticos en el pasado han utilizado principalmente la microscopía de dos fotones4,11,12, 13, imágenes por resonancia magnética (RM)14,15,16,17y imágenes ex vivo3,6,11, 18 para evaluar la cinética del trazador. La microscopía de dos fotones es un método adecuado para la toma de imágenes detalladas de los trazadores de LSN en pvSpres y el parénquima debido a su alta resolución espacial, sin embargo, tiene un campo de visión estrecho y requiere una ventana craneal invasiva o adelgazamiento del cráneo. La imagen ex vivo, en combinación con la inmunohistoquímica, permite análisis multinivel que van desde células individuales hasta todo el cerebro19. Sin embargo, el proceso de fijación de perfusión que se requiere para observar el tejido post mortem produce cambios profundos en la dirección del flujo de LSN y colapsa el PVS, alterando significativamente la distribución y la ubicación de los trazadores12. Finalmente, mientras que la RMN puede rastrear el flujo de LSF a través de todo el cerebro murino y humano, carece de resolución espacial y temporal del flujo perivascular.
Una nueva técnica, la imagen macroscópica transcraneal, resuelve algunas de estas limitaciones al permitir imágenes de campo amplio del transporte de LSC perivascular en toda la corteza dorsal de ratones vivos. Este tipo de imágenes se realiza con un macroscopio epifluorescente utilizando un cubo de filtro multibanda, una fuente de luz LED ajustable y una cámara CMOS de alta eficiencia10. Estas configuraciones son capaces de resolver PVS hasta 1-2 mm por debajo de la superficie del cráneo y pueden detectar fluoróforos de hasta 5-6 mm por debajo de la superficie cortical mientras dejan el cráneo completamente intacto10. Los filtros multibanda y los LED que pueden ajustar rápidamente la longitud de onda de excitación permiten el uso de múltiples fluoróforos, lo que permite etiquetar el LSC con marcadores de diferentes pesos moleculares y propiedades químicas en el mismo experimento.
Este procedimiento requiere una cirugía simple y mínimamente invasiva para exponer el cráneo y colocar una placa de cabeza ligera para estabilizar la cabeza durante la sesión de diagnóstico por imágenes. Los trazadores se pueden entregar en el CM sin perforar el cráneoo penetrar el tejido cortical con pipetas o cánulas 9,20. Tanto las cánulas CM como las placas de cabeza permanecen estables durante varios días a semanas y facilitan diseños experimentales más complejos en comparación con la visualización clásica de punto final. Este protocolo describe cómo se utilizan imágenes macroscópicas transcraneales para estudiar la función del sistema ginfogático después de la inyección aguda o crónica de un marcador fluorescente de LSN fluorescente en el CM de ratones anestesiados/dormidos o despiertos.
Hemos descrito un protocolo detallado para realizar imágenes transcraneales de LSC en ratones vivos utilizando macroscopios y trazadores fluorescentes disponibles comercialmente. Esta técnica es simple y mínimamente invasiva, pero cuantitativa. La imagen in vivo se correlaciona bien con métodos sensibles como el recuento de centelleo líquido de tracdores radiomarcados, incluidos 3H-dextran y 14C-inulin después de la administración de CM, y con cuantificación de sección coronal ex vivo<sup c…
The authors have nothing to disclose.
Este trabajo fue financiado por el Instituto Nacional de Trastornos Neurológicos y Accidentes Cerebrovasculares y el Instituto Nacional sobre el Envejecimiento (Institutos Nacionales de Salud de los Estados Unidos; R01NS100366 y RF1AG057575 a MN), el Programa de Redes Transatlánticas de Excelencia De la Fundación Leducq y el programa de investigación e innovación Horizonte 2020 de la UE (concesión no 666881; SVDs-target). También nos gustaría dar las gracias a Dan Xue por la asistencia de expertos con ilustraciones gráficas.
0.25% Bupivacaine HCl | University of Rochester Vivarium | ||
100 µL Gastight Syringe Model 1710 TLL, PTFE Luer Lock | Hamilton Company | 81020 | |
A-M Systems Dental Cement Powder | Fisher Scientific | NC9991371 | |
Carprofen | University of Rochester Vivarium | ||
Chlorhexidine | Prevantics | B10800 | |
CMOS Camera | Hammamatsu | ORCA Flash 4.0 | |
Head Plate | University of Rochester | No catalog # | Custom made at the machine shop at the University of Rochester |
High-Temperature Cautery | Bovie Medical Corporation | AA01 | |
Insta-set Accelerator | Bob Smith Industries | BSI-151 | |
Isoflurane – Fluriso | Vet One | 502017 | University of Rochester Vivarium |
Ketamine | Strong Memorial Hospital Pharmacy | ||
Krazy Glue | Elmer's Products, Inc | No catalog #, see link in comments | https://www.amazon.com/Krazy-Glue-KG48348MR-Advance-Multicolor/dp/B000BKO6DG |
Micropore Surgical tape | Fisher Scientific | 19-027-761 | |
Paraformaldehyde | Sigma-aldrich | P6148 | |
PE10 – Polyethylene .011" x .024" per ft., 100 ft. continuous | Braintree Scientific | PE10 100 FT | |
Pump 11 Elite Infusion Only Dual Syringe | Harvard Apparatus | 70-4501 | |
PURALUBE VET OINTMENT | Dechra | ||
Puritan PurSwab Cotton Tipped Cleaning Sticks | Fisher Scientific | 22-029-553 | |
Research Macro Zoom Microscope | Olympus | MVX10 | |
Simple Head Holder Plate (for mice) | Narishige International USA Inc | MAG-1 | |
Single-use Needles, BD Medical | VWR | BD305106 | |
Sterile Alcohol Prep Pads | Fisher Scientific | 22-363-750 | |
Tunable LED | PRIOR Lumen 1600-LED | ||
Xylazine | University of Rochester Vivarium |