This work presents a protocol for establishing a cell suspension culture derived from tea (Camellia sinensis L.) leaves that can be used to study the metabolism of external compounds that can be taken up by the whole plant, such as insecticides.
A platform for studying insecticide metabolism using in vitro tissues of tea plant was developed. Leaves from sterile tea plantlets were induced to form loose callus on Murashige and Skoog (MS) basal media with the plant hormones 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 mg L-1) and kinetin (KT, 0.1 mg L-1). Callus formed after 3 or 4 rounds of subculturing, each lasting 28 days. Loose callus (about 3 g) was then inoculated into B5 liquid media containing the same plant hormones and was cultured in a shaking incubator (120 rpm) in the dark at 25 ± 1 °C. After 3−4 subcultures, a cell suspension derived from tea leaf was established at a subculture ratio ranging between 1:1 and 1:2 (suspension mother liquid: fresh medium). Using this platform, six insecticides (5 µg mL-1 each thiamethoxam, imidacloprid, acetamiprid, imidaclothiz, dimethoate, and omethoate) were added into the tea leaf-derived cell suspension culture. The metabolism of the insecticides was tracked using liquid chromatography and gas chromatography. To validate the usefulness of the tea cell suspension culture, the metabolites of thiamethoxan and dimethoate present in treated cell cultures and intact plants were compared using mass spectrometry. In treated tea cell cultures, seven metabolites of thiamethoxan and two metabolites of dimethoate were found, while in treated intact plants, only two metabolites of thiamethoxam and one of dimethoate were found. The use of a cell suspension simplified the metabolic analysis compared to the use of intact tea plants, especially for a difficult matrix such as tea.
Tea is one of the most widely consumed non-alcoholic beverages in the world1,2. Tea is produced from the leaves and buds of the woody perennial Camellia sinensis L. Tea plants are grown in vast plantations and are susceptible to numerous insect pests3,4. Organophosphorus and neonicotinoid insecticides are often used as systemic insecticides5 to protect tea plants from pests such as whiteflies, leaf hoppers, and some lepidopteran species6,7. After application, these insecticides are absorbed or translocated into the plant. Within the plant, these systemic insecticides may be transformed through hydrolysis, oxidation or reduction reactions by plant enzymes. These transformation products can be more polar and less toxic than the parent compounds. However, for some organophosphates, the bioactivities of some products are higher. For example, acephate is metabolized into the more toxic methamidophos8,9, and dimethoate into omethoate10,11. Plant metabolic studies are thus important for determining the fate of a pesticide within a plant12.
Plant tissue cultures have been proven to be a useful platform for investigating the pesticide metabolism, with the identified metabolites similar to those found in intact plants13,14,15. The use of tissue cultures, particularly cell suspension cultures, has several advantages. Firstly, experiments can be carried out free of microorganisms, thus avoiding the interference of pesticide transformation or degradation by microbes. Secondly, tissue culture provides consistent materials for use at any time. Thirdly, the metabolites are easier to extract from tissue cultures than from intact plants, and tissue cultures often have fewer interring compounds and lower complexity of compounds. Finally, tissue cultures can more easily be used to compare a series of pesticides metabolism in a single experiment16.
In this study, a cell suspension derived from the leaves of sterile-grown tea plantlet was successfully established. The tea cell suspension culture was then used to compare the dissipation behaviors of six systemic insecticides.
This detailed protocol is intended to provide some guidance so that researchers can establish a plant tissue culture platform useful for studying the metabolic fate of xenobiotics in tea.
1. Tea callus culture
NOTE: Sterile leaves were derived from in vitro-grown plantlet lines first developed in the research group17. All procedures up to section 5 were carried out in a sterile laminar flow hood, except for the culture time in an incubator.
2. Tea cell suspension culture
3. Triphenyl tetrazolium chloride assay of cell viability
4. Treatment and sampling of tea cell suspension cultures with insecticides
5. Sample preparation of intact tea plant with insecticides
NOTE: The intact tea plant trial was conducted in a hydroponic system using tea seedlings grown in 50 mL of a nutrient solution (30 NH4+, 10 NO3-, 3.1 PO4-, 40 K+, 20 Ca2+, 25 Mg2+, 0.35 Fe2+, 0.1 B3+, 1.0 Mn2+, 0.1 Zn2+, 0.025 Cu2+, 0.05 Mo+, and 10 Al3+, in mg L-1)18. An experimental greenhouse was under a light-dark cycle (12 h of light and 12 h of darkness) at 20 °C at Anhui Agricultural University.
6. Instrument analysis
The induction of callus from leaves harvested from field-grown tea trees and from leaves excised from tea plantlets grown in vitro in a sterile environment was compared by measuring contamination, browning, and induction after 28 days of cultivation on MS media (Figure 1A). Callus growth was recorded at 20, 37, 62 and 90 days of culture (Figure 1B). The callus derived from the in vitro-grown leaves showed more vigorous growth than did the callus derived from the field-grown leaves during the whole 90 days of cultivation. The callus from the sterile leaves was bright yellow, while the callus from the field-grown leaves was brown (Figure 1B).
At a concentration of 1.0 mg L-1 of 2,4-D23, the concentration of KT was optimized. At 0.05 mg L-1 KT, the callus growth rate was slow, the texture was a little compact, and the callus was white in color (Figure 2C); at 0.1 mg L-1 KT concentration, the callus growth rate was the highest, up to 61.5% (Figure 2A), the texture was loose, and the color was yellowish (Figure 2C); when the KT was increased to 0.5 mg L-1, the callus was compact and irregular and brown in the center (Figure 2C). After the KT concentration was selected, the concentration of 2,4-D was further studied. At a combination of 1 mg L-1 2,4-D and 0.1 mg L-1 KT, the callus growth rate was the highest, reaching 46.9%, and the appearance of the callus was the best (Figure 2B,D).
After the 2nd subculture on solid media, more than half of the surface of each excised leaf was covered by growing callus (Figure 3A). After the 4th subculture, the leaf sections were completely covered by the callus. After the 5th subculture, the callus texture began to become compact with some white and brown spots on the bottom.
When the subculture cycle was 21 days long (Figure 3B), the callus was vigorous, but the greatest amount of growth had not been reached, indicating that frequent subculture would result in less callus amount. When the subculture cycle was 28 days long, the callus had grown vigorously, the color was yellowish color and the texture was loose. After 35 days, the callus began to brown from the center. The callus was in the worst state, with a deep brown color and no longer growing, at 42 days.
Two kinds of liquid media were compared for their effects on the growth of the callus and the color of the cell suspension (Figure 4). Three different ratios of mother liquid to total volume of culture liquid were tested. During the 75 days of cultivation, the cell density gradually increased in cultures started at all three ratios. The ratio of 15 g cells in 40 mL fresh media (v/v) yielded an optical density (OD) value significantly higher than that of 4 g in 40 mL (v/v) and 6 g in 40 mL (v/v) (Figure 5A). After 4 subculture cycles of 28 days each, a tea cell suspension system was successfully established from sterile tea callus in B5 liquid media (Figure 6).
Figure 1: Comparison of callus induction from picked leaves and sterile plantlet leaves. (A) Comparison of callus induction from leaves harvested from plantation-grown tea plants and from leaves excised from sterile, in vitro-grown plantlets. Explants were observed for contamination, browning and induction of callus. (B) Comparison of callus growth of leaves derived from plantation-grown tea plants (set 1) and sterile in vitro-grown plantlets (set 2): Photographs were on different days: 20 (panels a); 37 (b); 62 (c); and 90 (d). This figure has been modified from Jiao et al.24. Please click here to view a larger version of this figure.
Figure 2: The growth rate and growth status of tea-leaf derived callus under different plant hormone concentrations. The growth rate (A) and growth status (C) of tea-leaf derived callus under different KT concentrations and 1 mg L-1 2,4-D; The growth rate (B) and growth status (D) of callus under different 2,4-D concentrations and 0.5 mg L-1 KT. This figure has been modified from Jiao et al.24. Please click here to view a larger version of this figure.
Figure 3: Callus status after different numbers of subculture cycles (A) and different lengths of subculture cycles (B). This figure has been modified from Jiao et al.24. Please click here to view a larger version of this figure.
Figure 4: Influence of different media types on callus growth in liquid suspension culture system. (A) B5 medium. (B) MS medium. This figure has been modified from Jiao et al.24. Please click here to view a larger version of this figure.
Figure 5: The optical density values and TTC staining. (A) The OD680 value of cell suspension started at different ratios from 0 to 75 days; (B) The TTC staining of living and control cells. This figure has been modified from Jiao et al.24. Please click here to view a larger version of this figure.
Figure 6: The process of establishing a tea cell suspension culture at constant temperature (25 ± 1 °C) in a dark incubator. Sterile culture of tea plantlets as source of leaf explant (a); Tea leaf inoculated onto MS medium with 2,4-D (1.0 mg L-1) and KT (0.1 mg L-1) (b); Initial cultured callus after 28 days (c); Callus suitable for cell suspension after 4 subculture cycles of 28 days each (d); The remaining steps were at the same temperature but at a constant speed of 120 rpm in a shaking incubator: Callus inoculated into B5 medium for 7 to 10 days (e); Seeded cell suspension after removing the precipitated and large callus (f); The subculture of cell suspension after 1 cycle of 28 days (g); Mature cell suspension after 3-4 subculture cycles of 28 days each (h). This figure has been modified from Jiao et al.24. Please click here to view a larger version of this figure.
Supplemental Figure 1: The metabolism of 5 µg/mL of 6 insecticides in tea cell suspension culture and in media (CK) incubated at constant temperature (25 ± 1 °C) and shaking incubator speed (120 rpm) over 75 days. Thiamethoxan (A), imidacloprid (B), acetamiprid (C), imidaclothiz (D), dimethoate (E1), and omethoate (F); (E2) Production over time of the metabolite of dimethoate (omethoate) produced in dimethoate-treated cell culture and media. This figure has been modified from Jiao et al.24. Please click here to download this figure.
Supplemental Figure 2: Total ion chromatograms (TICs) of the extracts from untreated control cell culture, thiamethoxam-treated cell culture, thiamethoxam-treated media (cell-free) after 75 days. Peaks 1-5, 7 and 8 were metabolites of thiamethoxam and Peak 6 was thiamethoxam (A); TICs of the extracts from dimethoate-treated cell culture, dimethoate-treated media (cell-free), and untreated control cells after 60 days. Peaks 1 and 2 were metabolites of dimethoate and Peak 3 was dimethoate (B); TICs of the extracts from thiamethoxam-treated (upper) and untreated (lower) intact plants (C); TICs of the extracts from dimethoate-treated (upper) and untreated (lower) intact plants (D); The metabolite of dimethoate at tR 1.86 min in intact plants (D1); No compounds detected at tR 1.86 min in untreated plants (D2). This figure has been modified from Jiao et al.24. Please click here to download this figure.
Supplemental Figure 3: The secondary mass spectrometry using UPLC-QTOF of peaks derived from cultures treated with (A) thiamethoxam and (B) dimethoate. This figure has been modified from Jiao et al.24. Please click here to download this figure.
Supplemental Figure 4: The secondary mass spectrometry using Q-Exactive of peaks derived from intact plant treated with thiamethoxam (A1, A2 and A3) and dimethoate (B1 and B2). This figure has been modified from Jiao et al.24. Please click here to download this figure.
This article presents the detailed process of establishing a model of pesticide metabolism in tea plant tissue, including the selection of explants, the determination of cell viability, and the establishment of a tea cell suspension culture with high metabolic activity. Any parts of a plant tissue could be used to initiate callus in a sterilized environment25. Tea leaves were chosen for callus initiation in this study, not only because leaves to tend to be less contaminated than the parts below ground, but also because they are the edible part of the crop and the main target of pesticide application.
In this study, the induction rate and growth status of callus from leaves picked from the field and from leaves excised from a sterile plantlet grown in vitro were compared. The sterile leaves had much lower rates of browning and contamination and a higher rate of induction compared to field-grown leaves. This was likely because leaves from field-grown plants not only underwent surface sterilization using ethanol and mercury but also a change in growth environment, while sterile leaves were cultivated in a sterile environment and could be used directly without additional sterilization. In addition, the callus derived from the in vitro-grown, sterile plantlets showed more vigorous growth than the field-grown leaves during the 90 days of cultivation. Leaves from sterile plantlets were more suitable for induction of tea callus, not only because of their high callus induction and low contamination rates, but also because of the shorter pre-treatment time and independence from seasonal factors.
To culture loose and friable callus, the crucial parameters, primarily plant growth regulator levels and length of and number of subculture cycles, must be optimized25. 2,4-D can effectively promote callus induction and growth and is the most widely used hormone in callus culture26. Subculture times and subculture cycle length are also important for callus culture25. After 2 to 4 subcultures of 28 days of each cycle, the callus had a loose texture with a yellowish color and no browning. The optimization experiments determined that the best callus induction protocol was to place leaf explants from sterile plantlets on MS basal media containing 1 mg L-1 2,4-D and 0.1 mg L-1 KT and to transfer the explant/callus every 28 days for a total of 4 subculture cycles. This protocol initiated loose and friable callus that was suitable for the initiation of a cell suspension.
In plant tissue culture, the solid medium used for callus growth can often be used for cell suspension culture in a liquid form23. Whereas, tea comes into being large quantities of polyphenols in MS basal medium containing a high concentration of inorganic salts, resulting in the callus browning27,28. In this study, liquid B5 media and MS media were both tested. The average growth rates were found no significantly difference between the two cultures (16.66% in B5 basal media and 15.77% in MS basal media; Figure 4). However, the calluses were brown in MS basal media. So, B5 basal media was selected in the proposed method.
Oxygen is important to plant cell growth and metabolism. In liquid culture, an excessive volume of liquid will decrease the oxygen concentration and inhibit cell growth, while too little liquid also inhibits cell growth25. Several ratios of liquid to flask volume (mL liquid: mL flask) were tested. Based on the dry weight of the cell growth after 21 d, the liquid: flask ratios ranked as follows: 30:150 > 40:150 > 20:150, 50:150, 60:150 (mL: mL)23. In this study, 40 mL of culture liquid was placed in a 150 mL flask (40 mL: 150 mL) was selected according to the how the cell suspension looked as observed by the naked eye.
Plant cells cannot grow well when the cell density is too high or too low. Thus, the proportion of mother cell suspension culture to fresh medium at the time of subculture affects the growth potential of the cells29. This study used the OD value of the homogeneous cell suspension culture to represent the amount of cell growth. Inoculation with 15 g of mother liquid into 40 mL of total volume of culture liquid (v/v) was suitable for the cell growth. The subculture ratio was equal to between 1:1 and 1:2 (suspension mother liquid: fresh medium).
Cell viability within the tea cell suspension culture was tested by TTC staining. The colorless TTC compound can be converted to the red colored formazan by dehydrogenases in the mitochondria of living cells, but the color cannot be changed from dead cells (Figure 5B). This method verified the growth status of the cells in liquid culture.
The establishment of a tea cell suspension culture provides an easy in vitro research platform for studying metabolism and metabolites of different pesticides. Independent of season and weather, cell suspension cultures can be treated with different pesticides, different concentrations of active ingredient, and for different lengths of time. The metabolites produced in the tea cell suspension cultures were similar to those extracted from intact plants (Supplemental Figure 1 and Supplemental Figure 2). Interestingly, seven metabolites of thiamethoxam and two metabolites of dimethoate were detected in tea cell suspension culture, but only two metabolites of thiamethoxam and one for dimethoate in treated intact plants (Supplemental Figure 1, Supplemental Figure 2, and Supplemental Figure 3). This may be because of the easier extraction from cells without waxy cuticle, fewer compounds from the tea interfering with the mass spectrometry results (the matrix effect), or the simpler metabolite profile of tea cells compared to the whole plant.
The results showed that thiamethoxam was more readily metabolized by the tea cell compared with the other three neonicotinoids (Supplemental Figure 4). Both of the organophosphates (dimethoate and omethoate) were metabolized faster than the neonicotinoids. These results show the diversity of the metabolic pathways and of metabolic regulation in the tea cell, which need to be further studied.
Using intact plants to study insecticide metabolism and to identify insecticide metabolites presents numerous difficulties, including barriers to absorption and long-distance transport of both initial and breakdown compounds within the plant30. Cell suspension cultures could not only solve this problem, but also reduce matrix interference in sample analysis compared to the extract from fresh leaves24. This research proved that tea cell suspension cultures are an effective platform for studying the metabolism of xenobiotic compounds in the tea plant. It can be served as a mode to study the metabolism of xenobiotics in other plants.
The authors have nothing to disclose.
This work was supported by the National Key Research & Development Program (2016YFD0200900) of China, the National Natural Scientific Foundation of China (No. 31772076 and No. 31270728), China Postdoctoral Science Foundation (2018M630700), and Open Fund of State Key Laboratory of Tea Plant Biology and Utilization (SKLTOF20180111).
Acetamiprid (99.8%) | Dr. Ehrenstorfer | 46717 | CAS No: 135410-20-7 |
Acetonitrile (CAN, 99.9%) | Tedia | AS1122-801 | CAS No: 75-05-8 |
Agar | Solarbio Science & Technology | A8190 | CAS No: 9002-18-0 |
Clothianidin (99.8%) | Dr. Ehrenstorfer | 525 | CAS No: 210880-92-5 |
Dimethoate (98.5%) | Dr. Ehrenstorfer | 109217 | CAS No: 60-51-5 |
Imidacloprid (99.8%) | Dr. Ehrenstorfer | 91029 | CAS No: 138261-41-3 |
Imidaclothiz (99.5%) | Toronto Research Chemical | I275000 | CAS No: 105843-36-5 |
Kinetin (KT, >98.0%) | Solarbio Science & Technology | K8010 | CAS No: 525-79-1 |
Omethoate (98.5%) | Dr. Ehrenstorfer | 105491 | CAS No: 1113-02-6 |
Polyvinylpolypyrrolidone (PVPP) | Solarbio Science & Technology | P8070 | CAS No: 25249-54-1 |
Sucrose | Tocris Bioscience | 5511 | CAS No: 57-50-1 |
Thiamethoxam (99.8%) | Dr. Ehrenstorfer | 20625 | CAS No: 153719-23-4 |
Triphenyltetrazolium Chloride (TTC, 98.0%) | Solarbio Science & Technology | T8170 | CAS No: 298-96-4 |
2,4-Dichlorophenoxyacetic Acid (2,4-D, >98.0%) | Guangzhou Saiguo Biotech | D8100 | CAS No: 94-75-7 |
chiral column | Agilent CYCLOSIL-B | 112-6632 | Chromatography column (30 m × 0.25 mm × 0.25 μm) |
Gas chromatography (GC) | Shimadu | 2010-Plus | Paired with Flame Photometric Detector (FPD) |
High-performance liquid chromatography (HPLC) | Agilent | 1260 | Paired with Ultraviolet detector (UV) |
HSS T3 C18 column | Waters | 186003539 | Chromatography column (100 mm × 2.1 mm × 1.8 μm) |
Ultra-high-performance liquid chromatography (UPLC) | Agilent | 1290-6545 | Tandem quadrupole time-of-flight mass spectrometer (QTOF) |
Ultra-high-performance liquid chromatography (UPLC) | Thermo Scientific | Ultimate 3000-Q Exactive Focus | Connected to a Orbitrap mass spectrometer |