In this method, embryonic cardiac tissues are surgically microdissected, dissociated, fluorescently labeled, and implanted into host embryonic tissues. This provides a platform for studying the individual or tissue level developmental organization under ectopic hemodynamic conditions, and/or altered paracrine/juxtacrine environments.
Interpreting the relative impact of cell autonomous patterning versus extrinsic microenvironmental influence on cell lineage determination represents a general challenge in developmental biology research. In the embryonic heart, this can be particularly difficult as regional differences in the expression of transcriptional regulators, paracrine/juxtacrine signaling cues, and hemodynamic force are all known to influence cardiomyocyte maturation. A simplified method to alter a developing cardiomyocyte’s molecular and biomechanical microenvironment would, therefore, serve as a powerful technique to examine how local conditions influence cell fate and function. To address this, we have optimized a method to physically transplant juvenile cardiomyocytes into ectopic locations in the heart or the surrounding embryonic tissue. This allows us to examine how microenvironmental conditions influence cardiomyocyte fate transitions at single cell resolution within the intact embryo. Here, we describe a protocol in which embryonic myocytes can be isolated from a variety of cardiac sub-domains, dissociated, fluorescently labeled, and microinjected into host embryos with high precision. Cells can then be directly analyzed in situ using a variety of imaging and histological techniques. This protocol is a powerful alternative to traditional grafting experiments that can be prohibitively difficult in a moving tissue such as the heart. The general outline of this method can also be adapted to a variety of donor tissues and host environments, and its ease of use, low cost, and speed make it a potentially useful application for a variety of developmental studies.
Cardiac developmental research has benefitted enormously from the advent of germline transgenic model systems which have identified many of the gene regulatory networks that pattern different cell lineages and functional domains in the heart. However, identifying how these gene networks interact with and respond to microenvironmental conditions, including paracrine/juxtacrine signals and biophysical inputs (stretch, strain, hemodynamic flow), can be challenging. As such, it is not always easy to determine whether a cellular phenotype arises as a direct consequence of a genetic perturbation or as a secondary result of an adaption to changes in cardiac biomechanics or higher order tissue composition1,2.
Grafting experiments, which have classically been used to address concepts of fate specification, commitment, induction, and competence3,4, would represent an ideal approach to circumvent some of the challenges inherent in defining cell autonomous versus environmental influence in the heart. Unfortunately, heart contractions make standard grafting approaches difficult. Rapid movement of the tissue often prevents grafted cells from adhering to the heart and large tissue punctures (normally required for grafting) frequently lead to heart failure and embryonic lethality5,6,7. Therefore, we have developed a pressure-based, microinjection system for precision cellular implantation into the developing chick heart, circumventing the technical hurdles of tissue grafting described previously8,9. Using this technique, individual or small groups of cardiac cells isolated from a donor embryo can be microinjected into a variety of regions of a host embryonic heart eliminating the need for extensive host preparation and the large tissue insults that arise using standard grafting techniques. The microinjection needles used for these implantation studies have an outer diameter of ~30−40 µm, which means that the needle can be placed directly in the target tissue (i.e., can penetrate the embryonic myocardial wall) and cells can be focally delivered with minimal damage to the surrounding tissue. The protocol can be used to perform a variety of isotopic, heterotopic, isochoric, and heterochronic manipulations, providing a rapid, flexible, and low-cost approach to directly examine classical experimental embryological paradigms in the developing four-chambered heart.
In the protocol outlined below, we label donor cells with a cell permeant fluorescent dye, which allows for the success of a microinjection experiment to be monitored in real-time and the location of engrafted cells to be documented without the need for any additional staining. However, it should be noted that this approach is best suited for short term experiments (approximately 48 h) as the fluorescent dye can be lost through cell division. Alternative approaches can be used for longer term experiments.
While we are presenting this technique in the context of cardiac development, we have used it to great effect for cell implantation experiments into the mesoderm, head, limbs, and somites. As such the basic approach described below is highly tractable and can be used in a variety of organ systems.
All methods described adhere to animal care guidelines of The University of North Carolina at Chapel Hill.
1. Preparation of micro-injection pipettes
2. Preparation of solutions
3. Preparation of host embryos
4. Isolation of donor tissue
5. Trypsin digestion of donor tissue
6. In-vivo injection
7. Isolation and analysis
After 24 h incubation, the heart and surround tissue of host embryos were isolated, photographed (Figure 1A), and processed for immunofluorescent analysis. In this example, donor atrial myocytes were microinjected into the proepicardium of a similar staged host embryo. The host embryo was then stained with the muscle marker (MF20 green) and 4',6-diamidino-2-phenylindole (DAPI; blue). Injected cells (red) are clearly visible (Figure 1B). Possible adjustments to consider if cells are not visible include: donor tissue was over digested (cells would be unable to attach), labeling dye solution was too dilute, cells were over-washed, or multiple cell divisions resulted in loss of the label.
To confirm that the injected cells in this example were myocardial, we optically sectioned this embryo using a confocal microscope (Figure 1C-E). The only MF20 positive cells within the proepicardium (PE) are the fluorescent red positive cells that were focally implanted.
Figure 1: Representative images of embryos isolated 24 hours post injection. (A) Low magnification brightfield image of the trunk region of an E3.5 (HH Stage 19) chick embryo. (B) Merged image showing injected cells (red), cardiomyocytes (green), and DAPI. Cells were isolated from the atria and microinjected into the proepicardium. (C) High magnification confocal imaging showing labeled cells in the core of the proepicardium. (D) High magnification confocal imaging confirming CT Red labeled cells are cardiomyocytes. (E) Three-dimensional (3D) reconstruction of injected cells from panels D and E. At, atria; OFT, outflow tract; PE, proepicardium; Vt, ventricle; MF20, Myosin 4. Please click here to view a larger version of this figure.
The ability to define how microenvironmental conditions impact cardiac cell fate specification and lineage stabilization is fundamental to creating a compressive understanding of congenital heart disease as well as to developing efficient protocols for proper maturation of stem cell or somatic cell reprograming-based cardiomyocytes. The protocol outlined above gives investigators the ability to directly assay cardiac cell development under altered in vivo conditions, allowing for cell autonomous maturation processes to be separated from paracrine/juxtacrine and/or hemodynamic cues. When combined with high resolution imaging, genetic analysis, and physiological assays, this technique can serve as a powerful complement to existing transgenic models.
Form a technical stand point, the protocol presented here relies on efficient isolation, labeling, and precise implantation of donor heart cells into host embryonic tissues. The use of a microinjection system greatly aids in the targeting of the donor cells and allows for successful implantation without the need for creating a large engraftment site in the host tissue. Some operational skill is required to perform this technique however, as reduced viability can result if the injection needle is not carefully placed in the target tissue (causing rupture of the heart or local vasculature). Care and thought should also be given to the isolation and labeling steps. Over digestion of the donor tissue can lead to poor implantation efficiency, and transient labeling techniques can limit the time window over which donor cells can be tracked (as cell division can dilute the label).
This technique is highly modifiable and can be adapted for a variety of purposes. For example, donor cells from a large range of tissues and stages can be isolated (though optimization of the enzymatic digestion is required) and can similarly be injected into a variety of host tissues across different stages of development. Similarly, the labeling approach can be modified to track cells across different temporal windows, including the use of fluorescent inorganic semiconductor nanocrystals for longer transient labeling and implantation of quail cells or cells from green fluorescent protein transgenic (GFP+) donor embryos11 for permeant labeling.
While we currently use this technique for avian implantation studies, we feel that it could be used for a large range of chimeric studies in the future. For example, genetically altered cardiac cells from transgenic organisms could be isolated and microinjected into the avian heart using a very similar protocol. Furthermore, cells differentiated into cardiomyocytes from stems cells or via somatic cell reprograming approaches could be microinjected into the embryonic heart to evaluate their integration into the tissue and/or maturation under in vivo biomechanical conditions.
The authors have nothing to disclose.
This work was supported by grant R00HL122360 from the National Institutes of Health, National Heart, Lung, and Blood Institute (NHLBI).
1 mL Insulin Syringe | BD | 329654 | |
1.7 mL Microtubes, Clear | Genesee Scientific | 24-282 | |
10 ml Syringe | BD | 305482 | |
1000ul Reach Barrier Tip Racked, Sterile | Genesee Scientific | 24-430 | |
15 mL Centriguge Tubes, Racked | Genesee Scientific | 28-101 | |
1588 Genesis Hova-Bator Incubator | GQF | 813927021221 | |
18G x 1 1/2 Needle | BD | 305196 | |
200ul Barrier Tip Low Binding, Racked, Sterile | Genesee Scientific | 24-412 | |
32G x 1/2" Needle | TSK Steriject Air-Tite | TSK3213 | |
Alchohol Wipes 70% | Thermo Fisher Scientific | 19015744 | |
Angled Forceps | Fine Scientific Tools | 11260-20 | |
Backloading Tips | Eppendorf | 930001007 | |
Black India Ink | KOH-I-NOOR | 3084-F | |
CellTracker Green CMF | Thermo Fisher Scientific | C7025 | 1 mM in DMSO |
CellTracker Red CMTPX | Thermo Fisher Scientific | C34552 | 1 mM in DMSO |
Centrifuge | Eppendorf | 5424R | |
Commercial Grade Packing Tape | Staples | 2619001 | |
Curved Tenotomy Scissors | Fine Scientific Tools | 14067-11 | |
DMEM/F12 | Thermo Fisher Scientific | 11330-032 | |
DMSO, anhydrous | Thermo Fisher Scientific | D12345 | |
DPBS (10X), no calcium, no magnesium | Thermo Fisher Scientific | 14025092 | |
Femtojet 4i | Eppendorf | 5252000021 | |
Fetal Bovine Serum | Thermo Fisher Scientific | 10437-028 | |
Hatching Eggs | Pilgrim's Hatchery | — | |
HBSS, calcium, magnesium, no phenol red | Thermo Fisher Scientific | 14025-092 | |
Injectman 4 | Eppendorf | 5192000027D | |
Micromanipulator | Leica Microsystems | — | |
Parafilm | SIGMA | P6543-1EA | |
Paraformaldehyde 32% in aqueous solution, EM Grade | VWR | 100496-496 | |
Penicillin/Streptomycin | Thermo Fisher Scientific | 15140-022 | |
Petri Dish | Genesee Scientific | 32-107 | |
Pipette Grinder | Narishige | EG-44 | |
Pipette Puller | HEKA | PIP 6 | |
Scotch Transparent Tape | Staples | 487909 | |
Sigmacote | SIGMA | SL2-25ML | |
Stereo Microscope | Leica | — | |
ThermoMixer C | Eppendorf | 5382000023 | |
Thin Wall Glass Capillaries | World Precision Instruments | TW100F-4 | |
Transfer Pipette | Thermo Fisher Scientific | 273 | |
Trypsin-EDTA (0.05%), phenol red | Thermo Fisher Scientific | 25300-054 |