In the present study, we describe a methodology to analyze the C924T genotype. The protocol consists of three phases: DNA extraction, amplification by polymerase chain reaction (PCR), and analysis of the restriction fragment length polymorphism (RFLP) on agarose gel.
The thromboxane A2 receptor (TBXA2R) gene is a member of the G-protein coupled superfamily with seven-transmembrane regions. It is involved in atherogenesis progression, ischemia, and myocardial infarction. Here we present a methodology of patient genotyping to investigate the post-transcriptional role of the C924T polymorphism (rs4523) situated at the 3' region of the TBXA2 receptor gene. This method relies on DNA extraction from whole blood, polymerase chain reaction (PCR) amplification of the TBXA2 gene portion containing the C924T mutation, and identification of wild type and/or mutant genotypes using a restriction digest analysis, specifically a restriction fragment length polymorphism (RFLP) on agarose gel. In addition, the results were confirmed by sequencing the TBXA2R gene. This method features several potential advantages, such as high efficiency and the rapid identification of the C924T polymorphism by PCR and restriction enzyme analysis. This approach allows a predictive study for plaque formation and atherosclerosis progression by analyzing patient genotypes for the TBXA2R C924T polymorphism. Application of this method has the potential to identify subjects who are more susceptible to atherothrombotic processes, in particular subjects in a high-risk, aspirin-treated group.
TBXA2R is a member of the G-protein coupled superfamily with seven-transmembrane regions, which are widely expressed and localized either on the cell membranes or on intracellular structures1,2. The TBXA2R signaling pathway is involved in advanced atherosclerotic processes3. Increased expression of the TBXA2 receptor was demonstrated during the atherogenesis progression, and clinical and experimental studies showed its relevant role in ischemia and myocardial infarction4. C924T, a single nucleotide polymorphism (SNP) of the TBXA2R gene, was recognized as a functional polymorphism in healthy volunteers and has been linked to clinical disorders5. Furthermore, our previous study6 demonstrated that the C924T polymorphism of the TBXA2R gene is involved in transcript stability; specifically, there is an increased instability of the mutant (TT) type transcript with respect to the wild type (CC). In addition, several stimuli such as adenosine diphosphate (ADP), epinephrine, and collagen at different concentrations induced a platelet aggregation less effective for the mutant type (TT). This is consistent with a reduced thrombus formation and hemostasis. Thus, the instability of the TBXA2R transcript and the associated reduction of platelet aggregation might be associated with a protective role for the TBXA2R TT genotype against atherothrombosis and its complications in high-risk aspirin-treated patients6.
Here, we describe a methodology for patient genotyping to investigate the post-transcriptional role of C924T polymorphism (rs4523) situated at the 3' region of the TBXA2 receptor gene. This method relies on the following steps: (1) DNA extraction from whole blood, (2) PCR amplification of the TBXA2R gene portion containing the C924T mutation, and (3) identification of wild type and/or mutant genotypes using restriction fragment length polymorphism (RFLP) on agarose gel. RFLP is a technique that exploits variations in homologous DNA sequences7. This application was used to detect DNA polymorphisms, especially SNPs, and to find and associate biological relevance in genetic variations8. The polymorphism analyzed for the first time using the RFLP-PCR in humans was the ABO blood9. The RFLP-PCR method allows the analysis of genetic mutations in homologous DNA sequences by evaluating the presence of fragments of different lengths after the DNA digestion using highly specific restriction endonucleases10.
In past years, the following methodologies have been utilized for SNP analysis using the PCR technique: hybridization of short allele-specific oligonucleotides11, allele-specific PCR12, primer extension on DNA microarrays13, oligonucleotide ligation assay14, Direct DNA sequencing for identifying position-specific single-nucleotide polymorphisms15, Taqman method16, extraction Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry17, and GeneChips18. These techniques are not simple to use and may require expensive equipment. Conversely, the PCR-RFLP method is inexpensive, simple to use, convenient, has a high efficiency, and allows rapid identification of the C924T polymorphism. In addition, we confirmed the results by sequencing the TBXA2R gene using the Sanger method15.
This approach allows a predictive study of plaque formation and atherosclerosis progression by analyzing patient genotypes for the TBXA2R C924T polymorphism. This method could identify subjects more susceptible to atherothrombotic processes, in particular those among high-risk, aspirin-treated patients.
The protocol follows the guidelines of the Medical Research Ethics Committee of the University of Chieti.
1. Reagent Setup
2. DNA Purification
3. PCR Amplification of DNA Samples
4. RFLP of PCR Products
5. Gel Electrophoresis Analysis of PCR-RFLP Samples
The goal of this method is to evaluate the Thromboxane A2 receptor genotype with regard to the C924T polymorphism. The human TBXA2R gene is located on 19p13.3, spans 15 kbp, and consists of three exons separated by two introns. The C924T polymorphisms of the TBXA2R gene (of 539 bp) was amplified using the PCR primers shown in Figure 1, which were well-engineered to amplify a specific DNA region but not an orthologous or paralogous nonspecific region. In addition, an RFLP analysis using an RsaI restriction enzyme (Figure 1) on the PCR products was performed and the results were visualized on an agarose gel, in order to characterize the specific studied SNP.
Based on the presence of different fragment lengths after digestion of the DNA, it is possible to discriminate a patient's genotype for the C924T polymorphism. In fact, as shown on Figure 2, the homozygosity of the major allele (CC) displays two bands (395 and 144 bp), because the restriction enzyme precisely cuts the TBXA2R gene portion at the C924T polymorphism site. The homozygosity of the minor allele (TT) is demonstrated by a single band (539 bp), because the restriction enzyme cutting does not occur. The heterozygous (CT) allele shows three bands (539, 395, and 144 bp). As shown in Figure 2, the C924T polymorphism, defined by RsaI digestion on PCR product, has been confirmed by sequence analysis.
Component | Volume (µL) | Final concentration |
10x PCR buffer Tween-20 (15 M MgCl2) | 0.25 | 1.5 MgCl2 mmol/L |
dNTP mix (10 mM) | 1 | 200 µM |
Primer (forward)(10 pmol/µM) | 1 | 0.4 µM/µL |
Primer (reverse)(10 pmol/µM) | 1 | 0.4 µM/µL |
Taq polymerase (5 U/µL) | 0.2 | 1 U/µL |
Sample DNA (42 ng/µL) | 1 | 42 ng/µL |
DNase-free-water | 20.55 | |
Total | 25 |
Table 1: PCR amplification setup. A 25 µL master-mix reaction mixture set up in a 0.2 mL PCR tube to amplify a single DNA sample.
Standard PCR | |||
Initial activating step | 5 min | 95 °C | |
3-step cycling | |||
Denaturation | 30 s | 94 °C | |
Annealing | 60 s | 55 °C | |
Extension | 60 s | 72 °C | |
Number of cycles | 30 cycles | ||
Final extension | 8 min | 72 °C |
Table 2: PCR amplification program. Set up an automated thermal cycler in order to perform PCR and amplify the template DNA. PCR reactions are stopped by chilling at 4 °C.
Component | Volume (µL) (n = 1) | Volume (µL) (n = 10)* |
10x enzyme buffer | 2.5 | 27.5 |
Restriction enzyme (5 U/µL) | 0.5 | 5.5 |
DNase-free-water | 19.5 | 214.5 |
Total | 22.5 | 247.5 |
Table 3: Restriction enzyme digestion of PCR products. A master-mix solution is prepared so that the selected restriction enzyme digests the PCR products. *: To set up a master-mix solution for 10 samples, add 10% more, finally making up 11 samples.
Figure 1: PCR primers and RsaI restriction enzyme. The forward and reverse primers designed for amplifying the TBXA2R gene portion of 539 bp containing the C924T polymorphism. RsaI is the restriction enzyme selected to recognize the GTAC sites. ˅: cutting site of RsaI enzyme. C(/T): C924T polymorphism. Please click here to view a larger version of this figure.
Figure 2: Electrophoretic pattern and DNA sequence analysis. (A) The C924T genotype is recognized by the RFLP pattern after digestion with the specific RsaI enzyme. (B) DNA sequence analysis: The results obtained by RFLP after digestion with the RsaI restriction enzyme were confirmed using sequence analysis showing the C924T polymorphism. This figure has been modified from De Iuliis et al., Prostaglandins & Other Lipid Mediators6. Please click here to view a larger version of this figure.
In the present study, we have described a methodology that allows patient genotyping in order to investigate the post-transcriptional role of C924T polymorphism (rs4523) situated at the 3' region of the TBXA2R gene. First, this method relies on DNA extraction from whole blood. In particular, this first process consists of a purification of total human DNA, genomic and mitochondrial, from whole blood samples fresh or frozen, treated with EDTA (either citrate or heparin). For short term storage of whole blood samples, store at 2-8 °C for up to 10 days. For storage over 10 days, store samples at -70 °C. The automated purification process comprises 4 steps: lyse, bind, wash, and elute. Second, the method relies on PCR amplification of the TBXA2R gene portion containing the C924T mutation. Finally, identification of the wild type and/or mutant genotype using a restriction enzyme analysis (RFLP) on agarose gel is performed.
Critical steps in the protocol are the following: (i) In the case that a portion of the agarose gel stored at RT is used, the solidified agarose can be re-dissolved over a boiling-water bath (at 60 °C for about 15-20 min) or in a microwave oven (3-5 min) prior to pouring. Note: loosen the cap when re-melting agarose in a bottle. (ii), furthermore, when re-heating agarose, evaporation will cause an increase of its concentration. For this reason, it could be useful to compensate by adding a small volume of water. (iii) DNA fragments of less than 1,000 bp were differentiated by agarose gel, and TBE buffer is recommended to obtain the best possible separation. (iv) We prefer to use an agarose gel rather than a polyacrylamide gel because the preparation of the latter is more difficult, and it takes much longer to set up. (v) The choice of the running time of the gel electrophoresis relies on the expected size of the amplification products. Based on this protocol, it is sufficient to perform an electrophoresis for 20-30 min at 100 V in 2% agarose gel, since the size of the PCR fragments ranges from 100-500 bp. (vi) It is mandatory to obtain 10 to 50 ng of a good quality template DNA extracted from human samples. For this reason, we prefer to use an automated DNA purification rather than a semi-automated or manual one. (vii) Prepare the master-mix reaction for PCR amplification and the master-mix solution for PCR products digestion, adding 10% more (to account for loss of liquid during pipetting) to the volume calculated multiplied by the number of samples for the volume required for one DNA sample.
The most frequent pitfall of the method is the presence of extra amplification products due to an incorrect thermal cycler program, an incorrect amplification master-mix preparation, or a DNA template contamination. Furthermore, the absence of PCR products may be due to inactivated Taq polymerase or an incorrect thermal cycler run. In addition, the presence of unexpected fragments may be due to PCR product contamination or to an incomplete digestion from either an inactivated enzyme, too little amount of restriction enzyme volume, or a too short incubation time.
In the past years, the following methodologies have been utilized for SNP analysis using the PCR technique: hybridization of short allele-specific oligonucleotides11, allele-specific PCR12, primer extension on DNA microarrays13, oligonucleotide ligation assay14, Direct DNA sequencing for identifying position-specific single-nucleotide polymorphisms15, Taqman method16, extraction Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry17, and GeneChips18. These methods are not ideal because they are not simple to use and/or require expensive equipment. Conversely, the PCR-RFLP method described in this study is inexpensive, simple to use, convenient, has a high efficiency, and allows rapid identification of the C924T polymorphism. A limitation to the present method is that it can only be used for a small number of SNPs and for a few samples in a working session.
For future applications, this method can be used for predictive studies concerning plaque formation and atherosclerosis progression by analyzing the patient genotypes for the TBXA2R C924T polymorphism. Furthermore, this method could identify subjects more susceptible to atherothrombotic processes, in particular, high-risk patients treated with aspirin. Finally, this method could be applied to study other polymorphisms involved in personalized medicine for specific drugs (for example, anticoagulants and anticonvulsants) in order to understand the appropriate drug dosage and the individual pharmacological and clinical response for each patient before beginning therapy and to avoid adverse effects.
The authors have nothing to disclose.
This project was partially funded by 60% Ateneo grants from Ministero dell'Università, Italy to S.M., and E.T. We also received partial contributions to research expenses by the Department of Medical, Oral and Biotechnological Sciences, University of Chieti "G. d'Annunzio".
QIAsymphony SP | QIAGEN | 937055 | |
Spectrophotometer | EPPENDORF | 6131-02222 | |
UV-transilluminator | UVP | 732-110 | |
PCR tubes | EPPENDORF | H0030121589 | |
PCR thermal cycler | EPPENDORF | 5331-03721 | |
Pipettors and filter tips | EPPENDORF | H4910000018/42/69 AND 0030067037/10/02 | |
Horizontal minigel electrophoresis apparatus | DIATECH PHORESIS 10 | RI002-10 | |
Dry block heater | TWIN INCUBATOR | DG210 | |
QIAsymphony DNA Midi Kit | QIAGEN | 931255 | |
10X PCR buffer (usually supplied by the manufacturer with the Taq polymerase) | DIATECH AND TAKARA | T0100 AND R0001DM | |
Taq polymerase | TAKARA | R0001DM | |
dNTP mixture | DIATECH pharmacogenetics | NM001 | dNTP MIX 10X 100 microliters, 10mM |
PCR primers | DIATECH pharmacogenetics | \ | |
Restriction enzyme RsaI | New England biolabs | R0167L | |
Restriction enzyme 10X buffer | New England biolabs | R0167L | |
Agarose | Sigma | A9539 | DNA fragments are best separated in TBE buffer |
Tris base | Sigma | T6066 | |
Boric acid | Sigma | B7901 | |
0.5 M EDTA, pH 8.0 | Sigma | E7889 | |
10% (wt/vol) ammonium persulfate | Sigma | E3678 | prepared fresh each time |
EtBr (0.5 μg/μL) | Sigma | E8751 | |
Bromophenol blue | Sigma | B0126 | |
Xylene cyanol FF | Sigma | X4126 | |
Glycerol | Sigma | G5516 | |
DNA size marker | DIATECH pharmacogenetics | R1002-10 | Plasmide pBluescript II SK (+) restrict MSPI |
Sterile water (autoclaved) | DIATECH pharmacogenetics | \ |