Summary

CRISPR/Cas9 蛋白注射到沟鲶、鮰松毛虫、基因编辑的胚胎

Published: January 20, 2018
doi:

Summary

本文介绍了一种简单高效的 CRISPR/Cas9 系统在沟鲶胚胎基因编辑中的微注射协议。在这个协议中, 引导 rna 和 Cas9 蛋白被微量到一细胞胚胎的卵黄中。通过敲出两条沟鲶免疫相关基因来验证这个协议。

Abstract

整个基因组的渠道鲶鱼,鮰松毛虫, 已排序, 导致更多的机会研究渠道鲶鱼基因功能。基因敲除已被用来研究这些基因功能在体内。聚类定期 interspaced 短复发重复/CRISPR 相关蛋白 9 (CRISPR/Cas9) 系统是一个强大的工具, 用于编辑基因组 DNA 序列, 以改变其功能。传统的方法是通过显微注射将 CRISPR/Cas9 mRNA 引入单细胞胚胎, 这在鲶鱼中可能是一个缓慢而低效的过程。本文介绍了 CRISPR/Cas9 蛋白微注射鲶鱼胚胎的详细方案。简单地, 收集卵子和精子, 然后进行人工受精。受精卵被转移到含有 Holtfreter 溶液的培养皿中。注射量被校准, 然后引导 RNAs/Cas9 靶向的收费/白细胞介素1受体域包含的适配器分子 (TICAM 1) 基因和李结合凝集蛋白 (RBL) 基因微量到卵黄的一细胞胚胎。基因剔除是成功的, indels 通过 DNA 测序得到证实。由于这些突变的预测蛋白质序列的变化包括 frameshift 和截断蛋白质由于过早停止密码。

Introduction

微注射是一种常用的实验室技术, 通过玻璃毛细管1将少量的物质 (如 DNA、RNA、蛋白质和其他大分子) 输送到细胞或胚胎中。显微注射是使用特殊的设备设置, 包括微量, 微, 和显微镜2。这项技术已经被研究者用来通过转基因、基因敲除和基因治疗来改变许多生物体, 目的是了解细胞内组件的动力学3,4,5

沟鲶 (鮰松毛虫) 是美国水产养殖和休闲捕鱼活动中最流行的鲶鱼种类。越来越需要研究沟鲶的功能基因组学, 而沟鲶完整基因组测序提高了基因组编辑工具的应用价值6,7。了解基因功能不仅可以丰富对鲶鱼进行的研究, 而且还能导致更有效的基因改良计划, 以提高鲶鱼产业。一旦确定了某一特定性状的关键基因, 它们就可以通过基因组编辑来改进鲶鱼的生产, 从而产生有益的等位基因, 选择这些等位基因, 抑制有害等位基因, 转移通过转基因的有益等位基因, 或这些选项的一些组合。将不同品种的不同商业利益性状的最佳基因结合在一起, 将大大提高鱼类生产作业的生产率和利润率8

基因敲除是一种直接的方法来研究基因功能在体内。DNA 水平的突变将被后代继承, 这将有助于研究它们在不同世代的影响。不同的基因组编辑工具已经开发, 包括锌指核酸 (ZFNs), 转录激活剂样效应核酸 (TALENs), 和聚集定期 interspaced 短复发重复/CRISPR 相关蛋白 9 (CRISPR/Cas9) 系统9,10,11,12

CRISPR/Cas9 系统是一个强大的, 有效的工具, 已被用来编辑基因组 dna 序列包括在鱼通过 RNA 引导的站点特定的 dna 劈裂5,13。该系统由一个引导 RNA (gRNA) 组成, 它决定了基因组中的目标序列和 DNA 切酶, Cas9。CRISPR/Cas9 系统可以被设计成针对基因组中的任何序列, 具有优于 ZFNs 和 TALENs 的几个优点: (1) 更低的成本 (2) 更容易的工程 (3) 更具体的指南 RNA 绑定到目标序列, 并减少离靶突变 (4)多个序列可以同时针对不同的 gRNA (5) 基因的高诱变率, 不能由 TALENs 突变, 和 (6) 改善系传输率的突变高达6倍, 相比 ZFNs 和 TALENs14, 15161718

微注射的主要替代方法是电穿孔, 其中电动脉冲应用于胚胎或细胞, 以提高膜通透性和生物分子的摄取量19,20。一些转基因鱼的产生使用电穿孔, 如鳉 (Oryzias latipes), 斑马鱼 (斑马鱼), 鳞鲑 (虹 tshawytscha), 沟鲶, 海鲷 (鲷 sarba), 并鲤鱼 (鲤鱼)21,22,23,24,25,26

电穿孔已被用来提供质粒 DNA, RNA, 和 Cas9 蛋白的基因敲除。在哺乳动物细胞中, Cas9/gRNA 质粒 DNA、Cas9 mRNA/gRNA 和 Cas9 蛋白/gRNA 配合物通过电穿孔传递, 而诱变率最高的是使用 Cas9 蛋白/gRNA 配合物来测试大多数电穿孔条件下的27。在海脊索动物 (Ciona 性) 中, TALENs 表达的构造被 electroporated 成受精卵, 以诱导多种基因的敲除28。ZFNs 表达质粒结构是 electroporated 在沟鲶中敲出黄体生成素的途径29。然而, 一旦引入细胞, 质粒结构将需要转录到 rna 和翻译成功能蛋白之前, 他们可以针对预期的 DNA 序列, 这将可能延迟的时间, 与微注射 rna/蛋白.随着胚胎的发育, 延迟诱变增加了注射嵌的形成。此外, 转基因表达不太可能通过微注射来达到表达水平, 降低诱变效率。

作为一种将基因组编辑工具引入细胞的方法, 微注射在电穿孔方面有几个优点。基因组编辑分子可以通过显微注射30可靠地引入细胞或胚胎。需要较少的注塑材料。很容易确定注入的材料的数量。更高的变异率与低嵌在创建者鱼可以达到, 将改进系传输变异到 F1。由于突变率较高, 需要分析生产第一代鱼的创始人较少。在电穿孔, 更多的创始人鱼需要分析, 这将增加成本。然而, 沟鲶微量胚的生存率低于 electroporated, 但可以通过注入更多的胚胎31,32来克服。在沟鲶中, 卵黄微量胚的存活范围从16到55% 不等, 这取决于所针对的基因和 gRNA/Cas9 蛋白的用量32

定期注射鲶鱼胚胎在技术上要求和耗时, 然而, 一个快速和有效的 CRISPR/Cas9 蛋白显微注射协议提出的沟鲶胚胎。这一协议需要更少的时间和专业知识, 因为 CRISPR/Cas9 蛋白溶液被注射到一个细胞胚胎的蛋黄。数以百计的受精卵可以在1小时内注射 (大约是第一次发生细胞分裂所需的时间)。为了验证该协议, 在沟鲶、toll/白细胞介素1受体域内含有的适配器分子 (TICAM1) 基因和李结合凝集蛋白 (RBL) 基因中, 两种病易感性相关基因被淘汰。TICAM 1 参与了由 toll 样受体 (TLR) 3 启动的信号通路。在沟鲶, TICAM 1 是显着上调以下细菌的挑战与爱德华 ictaluri, 而它是 downregulated 在蓝鲶, 一个物种耐E. ictaluri33。RBL 在早期感染中起重要作用,杆菌柱, 杆菌病的致病剂, 在上调敏感的通道鲶鱼菌株中记录了急性和强健的杆菌, 与杆菌电阻应变34

Protocol

这项试验是在奥本大学 e.w. 贝壳渔业研究中心的鱼类遗传学研究组进行的。在实验开始之前, 这项实验所使用的所有实验协议都得到了奥本大学动物保育和使用委员会 (AU IACUC) 的批准。本试验所使用的设备和耗材清单可在材料表中找到。下面是在图 1中所示的对沟鲶单胞胚胎的制备和显微注射的步骤和程序。 1. 育雏选股和产卵 选择健康的鲶鱼幼?…

Representative Results

为了证明微注射协议的有效性, gRNAs 设计的靶向沟鲶费/白细胞介素1受体域包含的适配器分子 (TICAM1) 基因和李结合凝集蛋白 (RBL) 基因微量。 TICAM 1DNA 测序的载体从单个殖民地, 克隆 PCR 产品揭示了 indel 突变诱导的 TICAM 1 基因。突变率为 79%, 在24人分析。图 4和图 5说明?…

Discussion

本文介绍了一种用于实现基因敲除的沟鲶胚显微注射的详细方案。CRISPR/Cas9 蛋白在蛋黄中的注射更简单, 节省时间, 不需要广泛的训练时, microinjecting blastodisc 的一细胞胚胎, 这是最常见的技术, 大多数基因转移和基因编辑与鱼30,42. 目前的协议证明是成功的诱导 indels 沟鲶 TICAM 1 和 RBL 基因。这些可靠和有效的程序为今后在沟鲶中产生基因敲除奠定了基础。…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国农业部-NIFA 奖2015-67015-23488 到罗杰锥。作者感谢 Dr. 的描述在视频中的育雏股票选择标准。艾哈迈德 Elaswad 和卡里姆希望感谢埃及文化和教育局在华盛顿特区的资助他们的博士研究。

Materials

Reproboost implant Center of Marine Biotechnology Luteinizing hormone releasing hormone analog (LHRHa) for induction of ovulation in channel catfish females
TRICAINE-S Western Chemical. Inc. For sedation of brood stock fish during hormone injection and egg stripping. 
Phenol red Sigma-Aldrich P0290 0.5%, sterile filtered
Stereo microscope Olympus 213709 For visualizing the eggs during microinjection
Microinjector ASI-Applied Scientific Instrumentation  Model MPPI-3 For the delivery of the injection material into the embryos
Micromanipulator ASI-Applied Scientific Instrumentation  Model MM33  For holding and controlling the movement of the injection needle. 
Eppendorf Microloader Eppendorf 5242956.003 For loading injection solution into microinjection needles.
Vertical needle puller David Kopf Instruments Model 720 For pulling microinjection needles
Cas9 protein PNA Bio Inc.  CP01 Recombinant Cas9 protein from Streptococcus pyrogenes.
Expand High FidelityPLUS PCR System  Roche Diagnostics, USA For PCR and amplification of DNA templates to be used in gRNA preparation
Borosilicate glass capillaries Fisher Scientific 1 mm outer diameter (OD), for making microinjection needles.
Petri dish VWR 25384-302 For holding the embryos during the microinjection.
Crisco The J.M. Smucker Company Vegetable shortening for coating spawning pans and petri dishes. 
Holtfreter`s solution Home Made 59 mM NaCl, 0.67 mM KCl, 2.4 mM NaHCO3, 0.76 mM CaCl2, 1.67 mM MgSO4 to incubate the microinjected embryos till hatch. 
Doxycycline hyclate USP (monohydrate) Letco Medical 690904 Antibiotic added to Holtfreter's solution to 10 ppm to prevent bacterial infections.

Referências

  1. Hammer, R. E., et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 315, 680-683 (1985).
  2. Komarova, Y., Peloquin, J., Borisy, G. . Components of a microinjection system. , 935-939 (2011).
  3. Du, S. J., et al. Growth enhancement in transgenic Atlantic salmon by the use of an "all fish" chimeric growth hormone gene construct. Nat. Biotechnol. 10 (2), 176-181 (1992).
  4. Davis, B., Brown, D., Prokopishyn, N., Yannariello-Brown, J. Micro-injection-mediated hematopoietic stem cell gene therapy. Curr. Opin. Mol. Ther. 2 (4), 412-419 (2000).
  5. Jao, L. E., Wente, S. R., Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. U.S.A. 110 (34), 13904-13909 (2013).
  6. Liu, Z., et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat. Commun. 7, (2016).
  7. Abdelrahman, H., et al. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics. 18 (1), 191 (2017).
  8. Dunham, R. A. . Aquaculture and Fisheries Biotechnology : Genetic Approaches. , (2011).
  9. Miller, J. C., et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25 (7), 778-785 (2007).
  10. Doyon, Y., et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 26 (6), 702-708 (2008).
  11. Miller, J. C., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29 (2), 143-148 (2011).
  12. Ran, F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8 (11), 2281-2308 (2013).
  13. Hwang, W. Y., et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31 (3), 227-229 (2013).
  14. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  15. Cradick, T. J., Fine, E. J., Antico, C. J., Bao, G. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 41 (20), 9584-9592 (2013).
  16. Hruscha, A., et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development. 140 (24), 4982-4987 (2013).
  17. Varshney, G. K., et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25 (7), 1030-1042 (2015).
  18. Li, M., Zhao, L., Page-McCaw, P. S., Chen, W. Zebrafish genome engineering using the CRISPR-Cas9 system. Trends Genet. 32 (12), 815-827 (2016).
  19. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P. Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO Journal. 1 (7), 841 (1982).
  20. Powers, D. A., et al. Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol. Mar. Biol. Biotechnol. 1 (4-5), 301-308 (1991).
  21. Inoue, K., et al. Electroporation as a new technique for producing transgenic fish. Cell Differ. Dev. 29 (2), 123-128 (1990).
  22. Buono, R., Linser, P. Transient expression of RSVCAT in transgenic zebrafish made by electroporation. Mol. Mar. Biol. Biotechnol. 1 (4-5), 271-275 (1991).
  23. Sin, F., et al. Gene transfer in chinook salmon (Oncorhynchus tshawytscha) by electroporating sperm in the presence of pRSV-lacZ DNA. Aquaculture. 117 (1-2), 57-69 (1993).
  24. Dunham, R. A., et al. Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar. Biotechnol. 4 (3), 338-344 (2002).
  25. Lu, J. K., Fu, B. H., Wu, J. L., Chen, T. T. Production of transgenic silver sea bream (Sparus sarba) by different gene transfer methods. Mar. Biotechnol. 4 (3), 328-337 (2002).
  26. Cheng, Q., et al. Interaction of diet and the masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and N-3 fatty acid level in common carp (Cyprinus carpio). Transgenic Res. 23 (5), 729-742 (2014).
  27. Liang, X., et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44-53 (2015).
  28. Treen, N., et al. Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development. 141 (2), 481-487 (2014).
  29. Qin, Z., et al. Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar. Biotechnol. 18 (2), 255-263 (2016).
  30. Qin, Z. . Gene editing of luteinizing hormone, follicle-stimulating hormone and gonadotropin-releasing hormone genes to sterilize channel catfish, Ictalurus punctatus, using zinc finger nuclease, transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats/Cas9 technologies. , (2015).
  31. Dunham, R. A., Winn, R. N., Pinkert, C. A. . Transgenic Animal Technology: A Laboratory Handbook. , 308-336 (2014).
  32. Elaswad, A. . Genetic technologies for disease resistance research and enhancement in catfish. , (2016).
  33. Baoprasertkul, P., Peatman, E., Somridhivej, B., Liu, Z. Toll-like receptor 3 and TICAM genes in catfish: species-specific expression profiles following infection with Edwardsiella ictaluri. Immunogenetics. 58 (10), 817-830 (2006).
  34. Thongda, W., Li, C., Luo, Y., Beck, B. H., Peatman, E. L-rhamnose-binding lectins (RBLs) in channel catfish, Ictalurus punctatus: Characterization and expression profiling in mucosal tissues. Dev. Comp. Immunol. 44 (2), 320-331 (2014).
  35. Phelps, R. P., et al. Effects of temperature on the induced spawning of channel catfish and the production of channel× blue catfish hybrid fry. Aquaculture. 273 (1), 80-86 (2007).
  36. Poole, W., Dillane, M. Estimation of sperm concentration of wild and reconditioned brown trout, Salmo trutta L. Aquacult. Res. 29 (6), 439-445 (1998).
  37. Billard, R. Spermatogenesis and spermatology of some teleost fish species. Reprod. Nutr. Dev. 26 (4), 877-920 (1986).
  38. Coyle, S. D., Durborow, R. M., Tidwell, J. H. . Anesthetics in aquaculture. , (2004).
  39. Shah, A. N., Davey, C. F., Whitebirch, A. C., Miller, A. C., Moens, C. B. Rapid reverse genetic screening using CRISPR in zebrafish. Nat. Methods. 12 (6), 535-540 (2015).
  40. Armstrong, J., Duhon, S., Malacinski, G. . Developmental Biology of the Axolotl. , 220-227 (1989).
  41. Porazinski, S. R., Wang, H., Furutani-Seiki, M. Microinjection of medaka embryos for use as a model genetic organism. J. Vis. Exp. (46), (2010).
  42. Erickson, P. A., Ellis, N. A., Miller, C. T. Microinjection for transgenesis and genome editing in threespine sticklebacks. J. Vis. Exp. (111), e54055 (2016).
  43. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J. Vis. Exp. (25), e1115 (2009).
  44. Silverstein, J. T., Small, B. C., Tucker, C. S., Hargreaves, J. A. . Biology and Culture of Channel Catfish. 34, 69-94 (2004).
  45. Su, B., et al. Relative effectiveness of carp pituitary extract, luteininzing hormone releasing hormone analog (LHRHa) injections and LHRHa implants for producing hybrid catfish fry. Aquaculture. 372, 133-136 (2013).
  46. Aluru, N., et al. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus). Aquat. Toxicol. 158, 192-201 (2015).
  47. Chang, N., et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23 (4), 465-472 (2013).
  48. Edvardsen, R. B., Leininger, S., Kleppe, L., Skaftnesmo, K. O., Wargelius, A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE. 9 (9), e108622 (2014).
  49. Li, M., et al. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genética. 197 (2), 591-599 (2014).
  50. Zhong, Z., et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci. Rep. 6, (2016).
  51. Chakrapani, V., et al. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev. Comp. Immunol. 61, 242-247 (2016).
  52. Lim, J., Ghadessy, F. J., Yong, E. A novel splice site mutation in the androgen receptor gene results in exon skipping and a non-functional truncated protein. Mol. Cell. Endocrinol. 131 (2), 205-210 (1997).
  53. Gatfield, D., Unterholzner, L., Ciccarelli, F. D., Bork, P., Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. The EMBO Journal. 22 (15), 3960-3970 (2003).
  54. Talerico, M., Berget, S. M. Effect of 5’splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10 (12), 6299-6305 (1990).
check_url/pt/56275?article_type=t

Play Video

Citar este artigo
Elaswad, A., Khalil, K., Cline, D., Page-McCaw, P., Chen, W., Michel, M., Cone, R., Dunham, R. Microinjection of CRISPR/Cas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing. J. Vis. Exp. (131), e56275, doi:10.3791/56275 (2018).

View Video