Summary

二维和三维胚体小鼠胚胎干细胞的维甲酸诱导神经分化的分析

Published: April 22, 2017
doi:

Summary

我们描述了使用小鼠胚胎干细胞生成二维或三维的胚状体的技术。然后,我们解释如何以诱导胚状体细胞视黄酸,以及如何的神经分化由祖细胞标志物的免疫荧光和免疫印迹来分析其分化状态。

Abstract

从胚泡(通常在一天E3.5)的内质分离的小鼠胚胎干细胞(ESC),可以用作体外模型系统用于研究早期胚胎发育。在不存在白血病抑制因子(LIF)的,胚胎干细胞分化默认成神经前体细胞。它们可以积累成三维(3D)的球形聚集体称为胚状体(EB),由于其相似性的早期胚胎中。的EB可在纤连蛋白包被的盖玻片接种,在那里它们通过生长的二维(2D)扩展展开,或在3D胶原基质在那里继续成长为球状体,并分化成三个胚层注入:内胚层,中胚层和外胚层。三维胶原文化更加接近地模拟体内环境比2D日圆。所述2D EB培养通过免疫荧光和免疫印迹来跟踪分化促进分析。我们已经制定了两步神经不同点重刑协议。在第一步骤中,的EB通过悬滴技术生成的,并且,同时,被诱导通过暴露于视黄酸(RA)进行区分。在第二步骤中,在不存在RA的2D或3D格式神经分化前进。

Introduction

胚胎干细胞从胚泡内细胞团起源。这些细胞是多能的, 它们具有分化成起源的生物体的任何细胞类型的能力。 ESC 体外分化为广泛兴趣,作为调查的发育途径和机制的实验系统。它提供了一个强有力的和灵活的模型系统来测试的细胞和组织功能障碍修正新的治疗方法。 EB的早期胚胎发育过程中重演细胞分化的许多方面。具体地,可以当胚胎致死性使得难以确定胚胎缺陷1,2的蜂窝式的基础上使用的EB。的EB可以通过悬滴或液体悬浮液技术3形成。前者的优点是,以产生一致的大小和密度的EB中,从而有利于实验的再现性的能力。

<p c小姑娘="“jove_content”">与细胞外基质(ECM)粘附蛋白相互作用可能会影响贴壁细胞的运动性和存活。在2D培养系统,纤连蛋白经常被应用以增加对基底细胞粘附。纤连蛋白是由10种细胞表面的整联异二聚体4识别的基底膜成分。

RA是诱导神经分化5,6维生素A的一小的亲脂性代谢物。高浓度的RA的促进神经基因表达和在EB形成7,8阻遏中胚层的基因表达。 RA是由维生素A的氧化通过任一醇或视黄醇脱氢酶,随后醛氧化成最终产品通过醛脱氢酶9醛生产。神经分化需要从细胞质RA的运输由蜂窝RA-结合蛋白2(CRABP2)细胞核。在细胞核中,RA结合由一个RAR-RXR异二聚体10的其同源受体复合物。这导致招聘转录共激活因子和转录9,11的开始。此外,RA促进磷酸化的(活性)SMAD1的降解,从而拮抗BMP和Smad信号12。除了这些活动,RA增加Pax6的表达,支持神经分化13的转录因子。 RA信令由沉默调节蛋白1(Sirt1的),核烟酰胺腺嘌呤二核苷酸(NAD +)调制-即deacetylates CRABP2,以其易位干扰到细胞核依赖性酶,并因此与RA结合RAR-RXR异二聚体14,15 16。

e_content“>我们在设计这里所述的RA处理的EB协议的目标是为了便于调节ESC分化成神经元前体细胞中的信号传导途径的体外分析,以优化神经分化,其中一个这种协议的优点之一是便利细胞功能的免疫荧光。3D的EB的分析不能很好地穿透抗体和难以成像。EB解离成在特定的时间点的2D单层期间神经分化通过共聚焦显微镜促进免疫标记和细胞的成像。

Protocol

1.培养小鼠胚胎成纤维细胞的(MEF中) 制备MEF培养基,Dulbecco改良的Eagle氏培养基(DMEM,高葡萄糖),补充有15%胎牛血清(FBS)。 外套百毫米细胞培养皿以在室温下(RT)30分钟0.5%的明胶溶液。 计数使用流式细胞仪的MEF。除去明胶溶液,并立即倒入MEF培养基预先加热至37℃。迅速解冻丝裂霉素C处理的MEF的小瓶在37℃水浴中2分钟,然后播种每100mm明胶包被的培养皿2.8×10 6…

Representative Results

OCT4,NANOG,SOX2和是赋予ESC自我更新和多能性的核心转录因子。我们应用上述协议ESC的神经分化从野生型和从那里SYX,一个基因编码的RhoA特定交换因子SYX,被破坏基因改造的小鼠的菌株进行比较。我们曾在18血管牵连三亚。我们注意到,在EB的行为差异从三亚+ / +和三亚汇总- / -胚胎干细胞,并且进行了测试,如?…

Discussion

在这个协议中,我们提出一个相对简单的和方便的方法来研究的鼠胚胎干细胞的神经分化。在先前的协议中,RA在第2天或EB悬滴8的第4天或由悬浮培养7加入到培养基中,分别或后立即EB悬滴聚集21。在我们设计的方案,RA较早加入。尽管较早引进RA的到的EB通过悬浮培养形成的,这个方案产生的神经分化标记8更高的表达。

<p c…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国国立卫生研究院授予R01 HL119984到AH支持

Materials

Materials
MEFs EMD Millipore PMEF-CF ESC feeder layer
ESC EMD Millipore CMTI-2
Cell culture dish (60 mm) Eppendorf 30701119 Cell culture
Cell culture dish (100 mm) Falcon 353003 Cell culture
Petri dish (100 mm) Corning 351029 Hanging drops
24-well plate Greiner Bio-One 662160 2D EBs
6-well plate Eppendorf 30720113 Transfection
Dark 1.5 ml centrifuge tube Celltreat Scientific Products 229437 RA stock solution
Microscope cover-glass Fisherbrand 12-545-80 Circular, 12 mm diameter
Superfrost-plus microscope slides Fisherbrand 12-550-15
3D collagen culture kit EMD Millipore ECM675 3D culture
Effectene Transfection Reagent Qiagen 301427 Stem cell transfection
Microcon Centrifugal Filters (10 kDa) EMD Millipore MRCPRT010 Protein concentration
Name  Company Catalog Number Comments
Reagents
DMEM Lonza 12-709F MEFs culture
IMDM Gibco 12440-046 ESCs culture
Fetal bovine serum (FBS) EMD Millipore ES-009-B ESCs culture
Gelatin Sigma-Aldrich G2625 Dish coating
LIF R&D Systems 8878-LF-025 To maintain ESC pluripotency
MEM Non-Essential Amino Acids Solutions Gibco 11140050 Cell culture
2-Mercaptoethanol Gibco 21985023 Cell culture
Penicillin-Streptomycin Gibco 15140122 Cell culture
Gentamicin Gibco 15750060 Cell culture
MycoZap Plus-PR Lonza VZA-2022 Cell culture
0.25% Trypsin-EDTA Gibco 25200-072 Cell culture
DMSO Sigma-Aldrich D2650
All-trans-retinoic acid Sigma-Aldrich R2625-50MG Induction of neural differentiation
Bovine Serum Albumin Sigma-Aldrich A7030-50G Blocking and antibody dilution 
Triton X-100 Sigma-Aldrich T8787-100ML Cell membrane permeabilization
Cell strainer Corning 352360
Prolong Gold anti-fade reagent with DAPI Life Tech. P36931 Mounting reagent
16% Paraformaldehyde  Electron Microscopy Sciences 15710 Cell fixation
Fibronectin R&D Systems 1030-FN Dish coating
PBS Gibco 10010049
Collagenase type I Worthington Biochem. Corp LS004196 EB dissociation
Name  Company Catalog Number Comments
Primary Antibodies
Nestin (Rat-401) Santa Cruz Biotech sc-33677 Detection of neural differentiation
Oct4 Santa Cruz Biotech sc-5279 Detection of neural differentiation
Nanog Bethyl Laboratories A300-398A Detection of neural differentiation
Sox2 Cell Signaling 3579 Detection of neural differentiation
Tubulin b3 (AA10) Santa Cruz Biotech sc-80016 Detection of neural differentiation
Name  Company Catalog Number Comments
Secondary Antibodies
Donkey anti-Mouse-Alexa555 Life Tech. A31570 Immunofluorescence
Donkey anti-mouse-Alexa488  Life Tech. A21202 Immunofluorescence
Name  Company Catalog Number Comments
Instruments
Wide-field microscope Nikon Eclipse TS100 Cell culture imaging
Confocal microscope Nikon C2 Immunofluorescence imaging

Referências

  1. Hopfl, G., Gassmann, M., Desbaillets, I. Differentiating embryonic stem cells into embryoid bodies. Methods Mol Biol. 254, 79-98 (2004).
  2. Itskovitz-Eldor, J., et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 6 (2), 88-95 (2000).
  3. Dang, S. M., Kyba, M., Perlingeiro, R., Daley, G. Q., Zandstra, P. W. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng. 78 (4), 442-453 (2002).
  4. Johansson, S., Svineng, G., Wennerberg, K., Armulik, A., Lohikangas, L. Fibronectin-integrin interactions. Front Biosci. 2, d126-d146 (1997).
  5. Blumberg, B. An essential role for retinoid signaling in anteroposterior neural specification and neuronal differentiation. Semin Cell Dev Biol. 8 (4), 417-428 (1997).
  6. Ross, S. A., McCaffery, P. J., Drager, U. C., De Luca, L. M. Retinoids in embryonal development. Physiol Rev. 80 (3), 1021-1054 (2000).
  7. Bain, G., Ray, W. J., Yao, M., Gottlieb, D. I. Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun. 223 (3), 691-694 (1996).
  8. Okada, Y., Shimazaki, T., Sobue, G., Okano, H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol. 275 (1), 124-142 (2004).
  9. Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell. 134 (6), 921-931 (2008).
  10. Niederreither, K., Dolle, P. Retinoic acid in development: towards an integrated view. Nat Rev Genet. 9 (7), 541-553 (2008).
  11. Maden, M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 8 (10), 755-765 (2007).
  12. Sheng, N., et al. Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc Natl Acad Sci U S A. 107 (44), 18886-18891 (2010).
  13. Gajovic, S., St-Onge, L., Yokota, Y., Gruss, P. Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation. 62 (4), 187-192 (1997).
  14. Dong, D., Ruuska, S. E., Levinthal, D. J., Noy, N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem. 274 (34), 23695-23698 (1999).
  15. Sessler, R. J., Noy, N. A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol Cell. 18 (3), 343-353 (2005).
  16. Tang, S., et al. SIRT1-Mediated Deacetylation of CRABPII Regulates Cellular Retinoic Acid Signaling and Modulates Embryonic Stem Cell Differentiation. Mol Cell. 55 (6), 843-855 (2014).
  17. Yang, J., et al. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms. Sci Signal. 9 (438), ra76 (2016).
  18. Garnaas, M. K., et al. Syx, a RhoA guanine exchange factor, is essential for angiogenesis in Vivo. Circ Res. 103 (7), 710-716 (2008).
  19. Chou, Y. H., Khuon, S., Herrmann, H., Goldman, R. D. Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell. 14 (4), 1468-1478 (2003).
  20. Arai, T., Matsumoto, G. Subcellular localization of functionally differentiated microtubules in squid neurons: regional distribution of microtubule-associated proteins and beta-tubulin isotypes. J Neurochem. 51 (6), 1825-1838 (1988).
  21. Arnhold, S., Klein, H., Semkova, I., Addicks, K., Schraermeyer, U. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci. 45 (12), 4251-4255 (2004).
  22. Liu, Y., et al. Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 16 (3), 1138-1149 (1996).
  23. Altucci, L., et al. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 7 (6), 680-686 (2001).
  24. Pettersson, F., Dalgleish, A. G., Bissonnette, R. P., Colston, K. W. Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax. Br J Cancer. 87 (5), 555-561 (2002).
  25. Kothapalli, C. R., Kamm, R. D. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials. 34 (25), 5995-6007 (2013).
  26. Cai, J., et al. BMP and TGF-beta pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells. Dev Biol. 376 (1), 62-73 (2013).

Play Video

Citar este artigo
Yang, J., Wu, C., Stefanescu, I., Horowitz, A. Analysis of Retinoic Acid-induced Neural Differentiation of Mouse Embryonic Stem Cells in Two and Three-dimensional Embryoid Bodies. J. Vis. Exp. (122), e55621, doi:10.3791/55621 (2017).

View Video