Set-shifting, a form of behavioral flexibility, requires an attentional shift from one stimulus dimension to another. We extended an established rodent set-shifting task1 by requiring attention to different stimuli according to context. The task was combined with specific lesions to identify neuron subtypes underlying a successful shift.
Behavioral flexibility is crucial for survival in changing environments. Broadly defined, behavioral flexibility requires a shift of behavioral strategy based on a change in governing rules. We describe a strategy set-shifting task that requires an attentional shift from one stimulus dimension to another. The paradigm is often used for testing cognitive flexibility in primates. However, the rodent version has not been as extensively developed. We have recently extended an established set-shifting task in the rat1 by requiring attention to different stimuli according to context. All the experimental conditions required animals to choose either a left or right lever. Initially, all animals had to choose on the basis of the location of the lever. Subsequently, a change in the rule occurred, which required a shift in set from location-based rule to a rule in which the correct lever was indicated by a light cue. We compared performance on three different versions of the task, in which the light stimulus was either novel, previously relevant, or previously irrelevant. We found that specific neurochemical lesions selectively impaired the ability to make particular types of set shift as measured by the performance on the different versions of the task.
Behavioral flexibility is a key requirement for survival in a changing world. One of the established behavioral paradigms for testing this ability is set-shifting, in which a shift of attention from one stimulus dimension to another is necessary for changing action strategies after a change in rule. Several brain regions such as the prefrontal cortex and striatum are implicated in set-shifting2,3,4,5. Neural mechanisms for this function have been investigated across several species including humans5, monkeys6 and rats1,7,8,9. However, the rat versions of set-shifting tasks have not been as extensively developed. The cost-effectiveness of rats, their appropriate size for stereotaxic surgery, and the availability of recently developed genetic methods10, motivate further development of set-shifting paradigms for use in rats.
A typical set-shifting paradigm for rats requires a change between two behavioral strategies: for example, a response strategy and a visual-cue strategy. Rats initially have to choose one of two available options (such as left or right levers in an operant automated version1 or left or right arms in a T-maze version7,8,9,11). After a set shift, they have to switch to using a visual-cue strategy, such as a light cue indicating the correct side. In those conventional set-shifting tasks, it is necessary to shift attention from one stimulus dimension to another dimension that had been previously irrelevant.
In addition to changing to a dimension that had been previously irrelevant, there is also the logical possibility that a stimulus was previously relevant, or previously absent and now novel. Real life situations in nature may entail attention to a novel, or historically relevant but not crucial cue. Therefore, we considered these subtypes of set-shift, in a new variation of rodent set-shifting based on a previously established automated set-shifting task1.
We have recently demonstrated the use of the new version of set-shifting paradigms in an experiment to determine the effect of neurochemically specific lesions of the striatum12. In our previous study, we targeted cholinergic interneurons releasing acetylcholine (ACh) of the dorsomedial or ventral striatum since ACh and those subregions have been implicated in behavioral flexibility. All the experimental conditions demanded the same strategic shift but each involved different types of attentional shift: to a novel, previously relevant or previously irrelevant cue. We here describe detailed procedures of the paradigms, and highlight representative results suggesting that striatal cholinergic systems play a fundamental role in set-shifting, which is dissociable between different striatal subregions depending on behavioral contexts12.
All procedures for the use of animals were approved by the Animal Care and Use Committee at the Okinawa Institute of Science and Technology.
1. Animals
2. Hardware and Software for Behavioral Tests and Analyses
3. Behavioral Training and Testing
We used the strategy set-shifting task described above to investigate the role of cholinergic interneurons in behavioral flexibility. We compared the effect on the task of an immunotoxin-induced selective lesion of cholinergic interneurons in dorsomedial (DMS), ventral striatum (VS) and saline-injected control. All animals had to switch from choosing a lever based on the side (left or right), to choosing based on a cue light above the correct lever. We used three experimental conditions of set-shift in which the cue light was either: (1) novel, (2) previously relevant (indicating the correct lever), or (3) previously irrelevant (randomly assigned).
In these three experimental conditions, the initial acquisition of response strategy was intact in all the treatment groups, suggesting that cholinergic loss in the striatum had no effects on initial learning (Figure 2A–2C). These results are consistent with previous studies showing that inactivation of DMS or VS did not affect initial discrimination7,9 and that application of cholinergic antagonists systemically16 or locally to the striatum17,18,19 left initial learning intact.
In set-shift condition 1 (Figure 2A, novel cue), the percentage of correct responses was not significantly different. However, the number of perseverative errors was significantly increased in the VS lesion group than controls. During set-shift condition 2 (Figure 2B, previously relevant cue) neither learning performance nor types of errors were altered by the lesions. In contrast, in set-shift condition 3 (Figure 2C, previously irrelevant cue), the number of perseverative errors was significantly different between groups. In particular, there was a significant increase in perseverative errors after DMS lesions. Compared to the control group, the number of never-reinforced errors was significantly decreased in both DMS and VS lesion groups, which was evident in the early but not in the late phase of visual cue learning.
In summary, VS cholinergic lesions disrupted a strategic shift when a novel stimulus was given as a new important cue, causing more perseverative errors. On the other hand, DMS lesions affected set-shifting only when attention to a previously irrelevant stimulus was required, resulting in a different distribution of error types.
Figure 1: Three different conditions for a set-shift. A flow chart of three variations (A, B and C) of the set-shifting paradigm. A yellow circle shows a visual cue. Reprinted with permission from Aoki et al.12. Please click here to view a larger version of this figure.
Figure 2: Behavioral results in the set-shifting task. Percentage of correct responses in both response and visual cue strategy (left), types of errors committed over 10 sessions of visual cue strategy (middle), and early and late components of never-reinforced errors (right) are shown for each experimental condition (A, a shift of behavioral strategy required attention to a novel stimulus, B, to a previously relevant stimulus, C, to a previously irrelevant stimulus). Final group size is follows: condition 1, n = 16 (control), n = 19 (DMS), n = 14 (VS); condition 2, n = 13 (control), n = 18 (DMS), n = 14 (VS); condition 3, n = 21 (control), n = 17 (DMS), n = 16 (VS). Data are shown as Means ± SEM. Asterisks *, **, and *** are p <0.05, <0.01 and <0.001, respectively. Reprinted with permission from Aoki et al.12. Please click here to view a larger version of this figure.
We developed new variations on the established set-shifting paradigm for use in rats. Using those paradigms, cholinergic lesions of the striatum were found to impair set-shifting, suggesting a specific role of striatal cholinergic interneurons in set-shifting: suppression of an old rule and facilitation of exploration for a new rule. The effects differed between dorsomedial and ventral striatum, in accordance with the different role of these structures in learning.
A set-shifting task has been widely used to test behavioral flexibility in species ranging from humans to rodents1,4,5,7,8,9,12. The term, "set" is defined as the property of the stimulus relevant to behavior in a given trial20,21. The present study introduced new variations in which a subject was required to change behavioral strategy based on a change in which set is relevant. The new versions should be compared carefully with other studies using set-shifting. In a typical set-shifting paradigm, a subject initially forms a relevant set to guide behavior and ignores the irrelevant set. After the set-shift, the subject has to attend to the previously irrelevant set. Among the three conditions we proposed here, only condition 3 involves a set-shift. Condition 1 and 2 differ from such set-shift tasks in that either a novel stimulus or a subset of a compound stimulus becomes relevant. Learning curves and the number of perseverative errors of intact rats revealed differences in the initial acquisition and reacquisition between three conditions. Thus, each condition measures different functions: acquisition of a response to a novel cue, attention to a relevant but not crucial cue, and attention to the irrelevant cue. These new variations are useful for investigating neural mechanisms for different forms of behavioral flexibility.
Rats have many advantages for studying the neural mechanisms underlying behavioral flexibility, including their large size making them suitable for stereotaxic surgery, the availability of transgenic strains, and cognitive ability. Previous studies have established T-maze based or automated version of the set-shifting task in rats1,7,8,9,11. In case that an automated version is not available, three different manipulations introduced in this article are applicable to a T-maze based set-shift task3,7. Also, other stimulus dimensions with different sensory modality such as an odor cue can be combined22, which further extends variations.
It has previously been shown that inactivation of DMS or VS impairs set-shifting when it requires attending to a previously irrelevant stimulus7,9. This is also the case in condition 3 of the present study. However, an important question which remains to be answered is whether impaired set-shifting is derived from being unable to alter action strategies (such as from a response strategy to a visual cue strategy) during a shift, or the inability to pay attention to a stimulus that had been irrelevant in the initial discrimination. It is impossible to decide between these two possibilities by examining a single experimental context only. To dissociate the specific attentional deficit from more general impairment of shifting strategies, we have sought to create new variations of the set-shifting task, using two different conditions requiring the same shift but different types of attention.
Using these additional conditions, we could separate neural substrates underlying a shift of strategies in different contexts. For example, perseveration of VS lesioned rats in condition 1 where a new stimulus was introduced allowed us to reveal a potential mechanism of ventral cholinergic system in attentional processes and approach to the novelty important for the new rule. On the other hand, we did not observe general effects of DMS lesions on a strategic shift. Rather, it was specific to the situation in which a stimulus contingency changed and animals needed to pay attention to a previously irrelevant cue. Two additional conditions successfully control for a general impairment of shifting strategies. This enabled us to conclude that DMS and VS cholinergic systems have a common role in suppression of an old strategy and facilitation of exploratory behavior, even though they work in different environmental contexts, and neither one has a general role in shifting strategies itself.
In conclusion, new set-shifting variations make it possible to analyze rat's cognitive flexibility in more detail and help further understanding of neural mechanisms for behavioral flexibility under different environmental contexts. Future studies testing the involvement of other key brain regions such as prefrontal cortex and hippocampus would be encouraged using a variety of contexts as introduced in this article.
The authors have nothing to disclose.
This study was supported by Human Frontier Science Program and the Sasakawa Scientific Research Grant from the Japan Science Society.
Standard Modular Test Chamber | Med Associates | ENV-008 | |
Low Profile Retractable Response Lever | Med Associates | ENV-112CM | |
Stimulus Light for Rat | Med Associates | ENV-221M | |
Switchable Dual Pellet/Dipper Receptacle for Rat | Med Associates | ENV-202RM-S | |
Head Entry Detector for Rat Receptacles | Med Associates | ENV-254-CB | |
Modular Pellet Dispenser; 45 mg for Rat | Med Associates | ENV-203M-45 | |
Sonalert Module for Rat | Med Associates | ENV-223AM | 4.5 kHz available (ENV-223HAM) |
House Light for Rat Chambers | Med Associates | ENV-215M | |
SmartCtrl Interface Module, 8 input/16 output | Med Associates | DIG-716B | |
SmartCtrl Connection Panel, 8 input/16 output | Med Associates | SG-716B | |
45 mg Tablet-Fruit Punch | TestDiet | 1811255 | Several flavors available |