The determination of the solution structure of a protein by small angle X-ray scattering (SAXS) requires monodisperse samples. Here, we present two possibilities to ensure minimal delays between sample preparation and data acquisition: online size-exclusion chromatography (SEC) and online ion-exchange chromatography (IEC).
Biological small angle X-ray scattering (BioSAXS) is a powerful technique in molecular and structural biology used to determine solution structure, particle size and shape, and surface-to-volume ratio of macromolecules. The technique is applicable to a very wide variety of solution conditions spanning a broad range of concentrations, pH values, ionic strengths, temperatures, additives, etc., but the sample is required to be monodisperse. This caveat led to the implementation of liquid chromatography systems on SAXS beamlines. Here, we describe the upstream integration of size-exclusion (SEC) and ion-exchange chromatography (IEC) on a beamline, different methods for optimal background subtraction, and data reduction. As an example, we describe how we use SEC- and IEC-SAXS on a fragment of the essential vaccinia virus protein D5, consisting of a D5N helicase domain. We determine its overall shape and molecular weight, showing the hexameric structure of the protein.
BioSAXS is a powerful tool to determine the shape of nano-sized objects1-4. The scattering of X-rays by a solution containing macromolecules, sized in the nm range, is recorded at very low angles. This angular range contains information about global parameters: the radius of gyration; the largest intraparticle distance; the particle shape; and the degree of folding, denaturation, or disorder. The technique does not require crystals, and the macromolecule stays in solution and thus can be kept in conditions mimicking certain important parameters of the cell, such as ionic strength, pH, etc. The knowledge of these factors might help to determine, for example, the physiologically relevant oligomeric state of a protein of interest or to validate a proposed model of a complex. The characterization of protein-protein interactions in different buffer conditions, the creation of models of missing domains, the refinement of homology models, and the determination of discrete folded and unfolded states can be performed quickly and easily5.
As with any technique, BioSAXS has intrinsic weaknesses: aggregated or denatured samples, mixtures of particles, heterogeneous samples, radiation damage, and buffer mismatches may result in un-interpretable data. For many analysis methods, it is implicitly assumed that the sample is monodisperse, a requirement that is often difficult to obtain in practice. In many cases, the degradation of the sample is subtle and cannot be detected in the data on its own, and any attempt to interpret the data gives inaccurate or even misleading results. To overcome these obstacles, the combination of size-exclusion chromatography (SEC) and SAXS was implemented on many beamlines to ensure data quality and to make this technique more accessible for increasingly difficult samples6-11. Recently, we added a new method to the repertoire by developing online ion-exchange chromatography (IEC)-coupled SAXS12. Both techniques are opening SAXS to a wide range of biological particles formerly impossible to analyze. The choice of which method to use depends on the biophysical properties of the particles of interest.
SEC separates macromolecules by their size, whereby at least a 10% difference in apparent molecular mass is needed for the separation. Physical limitations of the column and physiological properties of the samples, like hydrophobic surfaces, flexibility, and lack of stability, also complicate data collection, analysis, and interpretation.
Ion-exchange chromatography, which separates molecules based on their charge and, hence, their binding affinity to the IEC column, can be used instead of or in addition to SEC. The total charge can be readily manipulated by changing the pH, or varying the salt concentration of the buffer, providing a relatively simple method for the controlled elution of the molecules from the IEC column. By using the charge, the separation of similar types and sizes of molecules, which would otherwise be difficult to separate, can be performed routinely with IEC. Additionally, IEC has the advantage of being able to deal with diluted samples, allowing one to avoid the concentration steps, which carry the potential risk of denaturing the protein. Unfortunately, as the charge distribution is highly sample-dependent, IEC requires optimization regarding the pH and the salt concentrations13,14.
For many proteins that are difficult to express, purify, or both, only low quantities of sample are available to study. It is important to be efficient and to minimize the number of purification steps and, therefore, the losses. For this reason, the last purification step is online directly prior to SAXS data acquisition, in order to increase the likelihood of collecting a good data set.
Here, we present and compare online SEC-SAXS and IEC-SAXS. Both techniques were implemented on the BioSAXS beamline BM29 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France15. As a test case, we used the D5N and helicase domain of the vaccinia virus protein D5, which was rather difficult to analyze structurally using other methods. The vaccinia virus is a member of the Poxviridae family and is 98% identical to the variola virus, the cause of small pox. Using the vaccinia system, we study the replication machinery, focusing here on the essential helicase-primase D5.
D5 is a 95-kDa protein with an N-terminal archeo-eukaryotic primase (AEP) domain16 followed by a cysteine cluster region (res. 240-345)16. Further towards the C-terminus comes a D5N domain (res. 340-460), which is always associated with D5-type helicases, and finally a superfamily 3 (SF3) helicase domain (res. 460-785) 17 (Figure 1A). The helicase domain of D5 builds a hexameric ring structure that is needed for tight binding to DNA. Thanks to recent SAXS and EM studies, the low-resolution structures of the primase and the helicase domains are now known18.
Here, we show how to use the implemented online chromatography techniques on the BioSAXS beamline BM29 at ESRF to gain insights into the structure of the C-terminal fragment (residue 323-785) of D5.
1. Description of the Offline Preparation and Sample Generation of a D5 Deletion Protein
NOTE: The D5323-785 construct (Figure 1A) was cloned, expressed, and purified as described18.
2. Data Collection
NOTE: Request beam time as early as possible. For ESRF, guidelines on available access types and on how to submit an application can be found at:
http://www.esrf.eu/UsersAndScience/UserGuide/Applying. After the acceptance of the proposal and an invitation for the experiment, all participants have to complete a safety training. After validation of the training, fill in the “A-form” (via the ESRF user portal) to declare the researchers visiting the beamline for the experiment, along with the required safety information on the samples. Contact the local contact person to discuss the experiment.
3. SEC-SAXS Data Reduction & Analysis
4. Ab Initio Modeling
5. IEC-SAXS Data Reduction, Analysis, and Modeling
6. Comparison of the Results
The results of the model-free invariant analysis are listed in Table 1. The analysis of the D5323-785 SEC-SAXS data showed a molecular mass estimate (from a Porod analysis) of 345 kDa versus 338 kDa, observed using IEC-SAXS. Both are in agreement with the expected mass of 6 times 53.5 kDa (321 kDa) for a hexamer. The ab initio modeling of both data sets was undertaken with no imposed symmetry (SEC-SAXS: χ2 = 0.88, IEC-SAXS: χ2 =3.1) and using C6 symmetry (SEC-SAXS: χ2 = 1.0, IEC-SAXS: χ2 = 4). As the overall fits to the scattering data for both reconstructions are comparable in both cases (Figure 1D and E), C6 symmetry can be assumed. Thus, the model corresponds to a hexagonal cone-like structure with a central channel, which appears partially obstructed (SEC: Figure 1F; IEC: Figure 1G, overlay Figure 1H). An examination of individual models before averaging shows that this obstruction is likely to be an artifact of the averaging process.
Figure 1: SAXS data analysis and comparison of D5323-785 (figure adapted from References 12 and 18). A) Schematic domain structure of D5 protein and D5323-785. B) Offline ion-exchange chromatogram with the indication of the three peaks. Orange curve: Absorbance at 280 nm (au), blue curve: percentage of buffer B. Percentages of buffer B at the peaks are indicated. C) Online ion-exchange chromatogram. Color key as in B. Additionally, the measured intensity is indicated in green. The experimental scattering curve and calculated curve of the model obtained by SEC-SAXS D) and IEC E) data analysis of D5323-785. F) Bead model of D5323-785 based on SEC data and G) IEC data. H) Overlay of the SEC and IEC models. The panels in F) to H) were created using a molecular visualization software24. Please click here to view a larger version of this figure.
Data-collection parameters | |
Instrument: | ESRF BM29 |
Wavelength (Å) | 0.99 |
q-range (Å-1) | 0.0032 – 0.49 |
Sample-to-detector distance | 2.864 m |
Exposure time (sec) | 1 per frame |
Concentration range | n.a. |
Temperature (K) | 293 |
Detector | Pilatus 1M (Dectris) |
Flux (photons/s) | 1 × 1012 |
Beam size (µm2) | 700 × 700 |
Structural parameters for D5323-785, SEC | |
I0 (cm-1) [from Guinier] | 0.0237 |
Rg (Å) [from Guinier] | 48 |
qminRg – qmaxRg used for Guinier | 0.77 – 1.24 |
Dmax (Å) [from p(r) ] | 145 |
q-range used for p(r) (Å-1) | 0.02 – 0.17 |
Porod volume Vp (Å3) [from Scatter] | (570 ± 5) × 103 |
Molecular mass Mr (kDa) [from Vp] | 345 |
Calculated monomeric Mr from sequence (kDa) | 321 |
Structural parameters for D5323-785, IEC | |
I0 (cm-1) [from Guinier] | 0.386 |
Rg (Å) [from Guinier] | 46.5 ± 0.1 |
qminRg – qmaxRg used for Guinier | 0.44 – 1.29 |
Dmax (Å) [from p(r) ] | 120 |
q-range used for p(r) (Å-1) | 0.03 – 0.18 |
Porod volume Vp (Å3) [from Scatter] | (577 ± 5) × 103 |
Molecular mass Mr (kDa) [from Vp] | 339 |
Calculated hexameric Mr from sequence (kDa) | 321 |
Table 1: SAXS data parameters. The table summarizes the parameters of SAXS data acquisition and analysis.
For many macromolecules, a final purification step using chromatography is required prior to SAXS data collection to obtain a good quality data set. However, not all samples remain stable; they may be prone to aggregation or re-equilibration to a mixture of oligomerization states. Therefore, a final online purification step on the beamline is required to minimize the time between purification and data collection in order to obtain the best-quality SAXS data. Depending on the biophysical properties of the protein of interest, SEC-SAXS or IEC-SAXS might be chosen to obtain optimal sample quality. Here, on a protein construct derived from the helicase/primase D5, both techniques are explained and discussed.
Acquisition of SEC-SAXS data is becoming more and more standardized and is available on many BioSAXS beamlines. Data analysis, especially background subtraction, is relatively straightforward and easy. However, a stable buffer signal and the sufficient separation of the macromolecular species remains essential. Therefore, it is critical to reserve enough time to equilibrate the column thoroughly. Failure of this method can be due to persistent contaminants of similar size to the protein of interest, low concentrations, and radiation-sensitive buffers.
In practice, initially, SEC-SAXS is likely to be used as the method of choice for most macromolecular samples. Still, many purification protocols require a prior IEC step due to the presence of contaminants or aggregation. Given that each concentration and chromatography step is associated with losses of sample (estimated at 30-50%) and time, direct IEC-SAXS is advantageous. For samples that cannot be purified by SEC, be it due to the presence of similarly sized "contaminants" or because they severely aggregate at the necessary concentrations, IEC-SAXS would always be the better-suited approach. Also, the higher flow rates supported by many IEC columns can help to reduce the transit time between purification and measurement. In the example presented here, IEC was used with a step elution, which allows for the separation of the close peaks of D5323-785 from contaminants by carefully choosing the salt concentration steps. In principle, the number of steps is unlimited, but practically, at least 1 step per peak is required, and not too many should be chosen. For the background subtraction method described above, it is crucial to measure a relatively high number of different buffer compositions in order to find the matching one.
A shared downside of both techniques is the lack of precise protein concentration information. Due to this, precise mass determination based on forward scattering is not possible. For globular proteins such as D5323-785, the Porod volume provides an alternative, albeit less precise, mass estimate, but for highly flexible or disordered proteins, this approach would not be valid.
A variation of the step-wise gradient IEC-SAXS method presented here is the use of a linear gradient instead. While it is possible to work with as many steps as desired to isolate sub-peaks using a step-wise elution, in the linear gradient approach, it is required to optimize the gradient conditions carefully in order to separate the peaks entirely before starting the SAXS experiment. Background subtraction in this approach could be done frame-wise and could be verified by the comparison of the individual frames, but it requires more advanced data handling, and a dedicated software does not exist yet.
The choice of a suitable column is critical for both techniques, as it determines the separation of the macromolecular species. Size-exclusion columns differ in loading capacity, the size range of separable macromolecules, and resolution, while ion-exchange columns vary in the kind and the density of their immobilized charges.
While the protocol presented here is specific to the ESRF beamline BM29, adaptation to any other SAXS beamline is, in principle, straightforward. The main requirements are a sufficiently high X-ray flux and a suitable detector (ideally single-photon-counting), to acquire reasonable signal-to-noise data in the range of seconds or less, and an online liquid chromatography system capable of creating gradients. The exact implementation would, of course, depend on the local beamline environment.
The results obtained on D5323-785 using the two methods differ slightly. The radius of gyration is slightly smaller for the IEC data than for the SEC data, and the local minima of the scattering curve are shifted to slightly larger scattering vectors. This means that the D5323-785 measured with IEC-SAXS is slightly more compact than the D5323-785 measured with SEC-SAXS. This might be due to differences in the sample preparation, in the time between purification and measurement (IEC is faster), or, less likely, to a contaminant in the SEC-purified sample. The bead models obtained completely independently with both methods are comparable (Figure 1H). D5323-785 shows the expected hollow, hexameric structure18.
In conclusion, online ion-exchange and online size-exclusion chromatography are important biochemical purification methods that can be coupled directly to SAXS6,7,9-12,25,26. The background subtraction of IEC-SAXS data is slightly more difficult and ambiguous than for SEC-SAXS, but it is nevertheless possible. Depending on the biophysical properties of the protein of interest, both SEC and IEC-SAXS allow for the optimization of species separation with inherent advantages. Providing that the validation steps (as described) are correctly observed, the resulting data can be analyzed with confidence, and models can be determined using the standard tools available within the community. Together, both techniques allow online separation for a broad range of biological macromolecules, yielding data not accessible via standard static measurements.
The authors have nothing to disclose.
We acknowledge financial support for the project from the French grant REPLIPOX ANR-13-BSV8-0014 and by research grants from the Service de Santé des Armées and the Délégation Générale pour l’Armement. We are thankful to the ESRF for the SAXS beam time. We thank Andrew McCarthy, Gordon Leonard, Wim Burmeister, and Guy Schoehn for financial and scientific support.
1,4 dithiothreitol [DTT] | Euromedex | EU0006-B | |
10% Mini-PROTEAN TGX Precast Protein Gel | Biorad | 4561033 | |
2x Phusion Flash PCR Master Mix | ThermoFisher scientific | F 548 | |
acetic acid glacial | VWR Chemicals (BDH Prolabo) | 20104.298 | |
Agarose D-5 | Euromedex | LF45130653 | |
Amicon Ultra -15 Centrifugal filters Ultracel -30K | Millipore Ltd | UFC903024 | |
Ampicillin sodium salt | Euromedex | EU0400-D | |
Benzonase | Novagene | 70750-3 | |
bromophenol blue | MERCK | 8122 | |
Complete protease inhibitor cocktail | Roche | 11231400 | |
Econo-Pac 10 DG Desalting column | Bio-rad | 732-2010 | |
EDTA | Sigma | E-5134 | |
Glycerol | VWR Chemicals (BDH Prolabo) | 24388.295 | |
Glycine | Euromedex | 26-128-6405-C | |
HindIII | Roche | 656313 | |
HisSelect HF Nickel Affinity Gel | Sigma | H0537 | |
Hydrochloric acid (HCl) | VWR Chemicals (BDH Prolabo) | 20252.295 | |
Imidazole | AppliChem Panreac | A1073,0500 | |
InstantBlue | Expedeon | ISB1L | |
LB broth Miller | Fluka Analytical | L3152 | |
MgCl2 | ICN Biomedicals Inc. | 191421 | |
NaCl | VWR Chemicals (BDH Prolabo) | 27808.297 | |
NcoI | Fermentas | ER0571 | |
One Shot BL21 Star (DE3) | ThermoFisher scientific | C6010-03 | |
pProEx HTb vector | Addgene | 10711018 | |
Primer | Eurofins mwg operon | ||
QIAprep Spin Miniprep kit | QIAGEN | 27106 | |
QIAquick Gel extraction kit | QIAGEN | 28706 | |
QIAquick PCR purification kid | QIAGEN | 28106 | |
SDS | Sigma | 75746 | |
Superose 6 10/300 GL | GE Healthcare | 17-5172-01 | |
SYBR Safe DNA gel stain | Invitrogen life technology | S33102 | |
T4 ligase | ThermoFisher scientific | EL0011 | |
TEV | home made | ||
TOP 10 | Invitrogen life technology | C404003 | |
Tris base | Euromedex | 26-128-3094-B | |
Uno Q 1R column | Bio-rad | 720 0011 | |
β-mercaptoethanol | MPBiomedicals, LLC | 194834 | |
Name | Company | Catalog Number | Comments |
Softwares | |||
Beamline control software BsXCuBE | ESRF | Pernot et al. (2013), J. Synchrotron Rad. 20, 660-664 | local development |
Camserver software | Dectris | n.a. | detector control software |
DAMAVER | ATSAS 2.6.0 | http://www.embl-hamburg.de/biosaxs/download.html | program to align ab initio models |
DAMMIF | ATSAS 2.6.0 | http://www.embl-hamburg.de/biosaxs/download.html | ab initio model reconstruction programm |
HPLC program Biologic Duo Flow | Bio-rad | ||
HPLC program LabSolutions | Shimadzu | n.a. | |
ISPyB | ESRF | De Maria Antolinos et al. (2015). Acta Cryst. D71, 76-85. | local development |
PRIMUS | ATSAS 2.6.0 | http://www.embl-hamburg.de/biosaxs/download.html | program, which performs the manipulation with experimental SAXS |
PyMOL | DeLano Scientific LLC | https://www.pymol.org/ | software for visualization. |
SUPCOMB | ATSAS 2.6.0 | http://www.embl-hamburg.de/biosaxs/download.html | program to superimpose 3D structures |
Name | Company | Catalog Number | Comments |
Equipment | |||
BioLogic Duo Flow | Biorad | ||
BioLogic Biofrac Fraction collector | Biorad | ||
HPLC system | Shimadzu | ||
Labsonic P | Sartorius Stedim biotech | BBI8535108 |