Summary

弯曲试验在土壤确定阿太堡限塑

Published: June 28, 2016
doi:

Summary

用于确定土壤中塑性极限传统标准化测试是由手工进行,其结果取决于操作人员。基于弯曲测量的另一种方法,提出了这项研究。这使得具有明确和客观的标准得到了限塑令。

Abstract

螺纹轧制试验是最常用的方法,以确定土壤中的塑性极限(PL)。它已被广泛批评,因为从执行的测试其性能时所涉及的运营商,这可能显著影响最终结果相当的主观判断。不同的替代方法已经提出,但他们不能在速度,简单性和成本的标准碾压试验竞争。

在由作者先前的研究,提出了一个简单的装置,以确定PL一个简单的方法(“线弯曲试验”或简称为“弯曲试验”);以最小的操作者的干扰来获得允许对PL此方法。在本文件的原始弯曲试验的一个版本被示出。实验依据相同的原始弯曲试验:土壤线程它们是3毫米直径和52毫米长的弯曲,直到他们开始产生裂纹,所以,无论是bendiNG生产及其相关的水分含量被确定。但是,这种新的版本使PL的从方程式的计算,所以,没有必要来绘制任何曲线或直线,以获得该参数,并且在事实上,PL只能与一个试验点(但是两个试验点来实现推荐使用)。

这个新的版本获得的PL结果非常相似,由经验丰富的操作者通过原始的弯曲试验和标准轧制试验获得的那些。仅在高塑性粘性土的特定情况下,有在结果较大的差异。尽管如此,弯曲试验非常适用于所有类型的土壤,无论是凝聚力和非常低的可塑性的土壤,后者是最难通过的标准螺纹轧制方法测试。

Introduction

液限(LL)和塑限(PL)是那些由阿太堡于1911年定义的两个最重要的土壤一致性限制1。LL标志着液塑状态之间的边界,以及塑料和半固体状态之间PL。 LL是根据通过卡萨格兰方法2,3或渗透试验4几个标准在世界各地获得的。这两种方法都是通过机械装置进行;因此,最少的操作干扰参与。在PL的情况下,所谓的“搓丝测试”是决心2,5最流行 ​​的和标准化的方法。此测试是基于直到操作员认为该土壤被破碎手工压延土壤成3mm线程。出于这个原因,它已被广泛批评,因为操作者的技能和判断起到测试的结果的关键作用。标准滚动试验是重要的受多种不可控因素,如作为所施加的压力,该接触几何,摩擦,轧制速度,样品的大小和土壤6,7的类型。美国社会测试和材料协会(ASTM)制定的ASTM D 4318标准,它包括一个简单的装置,以便最小化操作员干涉2,8,但是根据测试比较手册轧制试验时显著差异已经报道了一些土壤通过ASTM D4318装置9进行。

PL是岩土工程的目的非常重要的参数,因为塑性指数(PI)是由它(PI = 11 – PL)获得; PI用于按照ASTM D 2487 10所示的塑性图的土壤,基础卡萨格兰德11,12研究的基础上进行分类。在PL错误影响负这种分类13,因为这个原因,需要用于PL测定一个新的测试。

普费弗科恩测试,锥penetrome之三,毛细管流变仪,转矩流变仪或者应力-应变测试的测量土壤可塑性14的替代方法的一些示例,但这些都不是足够获得的PL。用落锥试验的特殊情况下,大量的研究人员已经试图定义为使用不同的透度计的PL测定的新方法设计15-20,但没有达到任何真正的协议。此外,所有的它是基于这样的假设,在PL中的剪切强度是LL处21,这是不正确的22的100倍。

巴恩斯23,24开发了模拟土壤气缸的轧制条件,企图放下对PL确定一个明确的标准的装置。尽管如此,一些缺点识别用这种方法,如它的复杂性,试验时间和主要计算的PL 25的可疑的装置。标准碾压试验成功在于它的简单,快速的性能和成本较低,因此没有别的选择方法将能够替代它,除非它满足这三个要求和其他的,诸如高的精度和低的操作者的干扰。

在由作者先前的研究中,一个新的PL方法被提议25:原始线程弯曲试验(或简单弯曲试验)允许从在其被表示含水量和弯曲变形的关系的曲线图获得的PL。获得并绘制了几个试验点,每个土壤作者(协议遵循以获得这些点的相同,在本纸表示),以使点的相关性可以用两种方式来定义,而不以任何方式损害点路径的正确定义:作为一个抛物线,命名为弯曲曲线( 图1A),并作为两条相交直线与不同坡度,命名为硬塑料线和软塑料线。刚性塑料线是最陡之一,和PL从它计算为对应于这与y轴( 图1B)的分界点的含水率。在此截止点产生的弯曲是零,这是按照塑性极限的概念, ,PL为在该土壤不能经受低于该阈值(半固体状态)变形的水分含量,但它确实熊他们上面(塑料状态)。虽然在最初的研究中,PL不能直接由弯曲曲线(这不相交y轴)中得到,这条线是非常有用的,因为考虑到弯曲曲线和交叉线遵循非常相似的路径,弯曲从实验数据获得的曲线方程来获得额外的点,首先,修正任何偏差,其次,进行只数点测试, 如图1B所示 。< / P>

图1
图1.在由原始的弯曲测试一个测试土壤的BW点的图形表示。(A)中的点的相关性被表示为抛物线曲线,命名为弯曲曲线的方程被包括。 (B)中的点的相关性是由两条相交线和其他加分相加(它们从弯曲曲线公式计算出)限定。 B值都为B = 52.0-D(其中D是在毫米裂化时的末端之间测得的平均距离)获得,对PL被计算为对应于硬​​塑料线与截止点的水含量y轴。这个数字已经从莫雷诺- Maroto 阿隆索Azcárate25修改。K“>点击此处查看该图的放大版本。

所有结果与那些经验丰富的操作人员通过传统的螺纹轧制方法取得了优异的协议。但是,原来的弯曲试验仍比标准螺纹滚压测试慢。在试图进一步节省试验时间,单点版本被提出。它是基于在24试土壤中得到的平均弯曲斜率(m),这是0.108(m是当在双对数刻度表示的弯曲曲线的斜率,M出现在图1A中弯曲曲线方程) 。通过在那里被列入此因子的方程的装置,无论是硬塑料和软塑料线被以图形绘制,并因此对PL估计。这些结果也高度同时与多点弯曲试验的标准轧制测试相关。尽管这一个点versio的n是速度甚至比传统的测试中,PL的计算比较复杂,因为策划是必要的。出于这个原因,统计标准的基础上用于PL计算一个新的方程已经开发在这项研究中,所以不要求绘图和结果只能与一个点来实现的,而实验方案是相同的原始弯曲测试。这个新版本满足必要的要求,以取代过时的螺纹轧制方法。

Protocol

1.收集,干燥,过筛试验样品收集在该领域的土壤样品(用铲子或镘)并将其存储在一个聚乙烯袋中。 注:样品的体积取决于土壤的类型而变化:在100至1000 g的细土(粘土和淤泥)通常是足够的,但在沙质土壤和那些含有砾石和卵石,可能需要大量的,由几到几千克。 通过在实验室四分法降低采样,如果这是过于冗长(如果有必要使用的土壤分离器)。 放置在托盘上的…

Representative Results

在该协议的步骤6.1中所示的PL方程是通过在作者25( 表1)的先前研究中测试的24个土壤的统计研究实现。其目的是要知道的最可能的弯曲斜率(弯曲曲线方程中的术语米 ,这显示在图1A)和B中的哪PL被按照原始的弯曲测试中得到的弯曲曲线上的平均值(原试验使用3个以上的实验点进行,并需要有图表来获得的PL, 如图1)。</st…

Discussion

阿太堡限塑令1在土壤中一个非常重要的参数,主要是因为它被广泛用于土工目的10,11,12。为PL测定标准滚丝测试已被广泛批评,因为它是高度依赖于谁是进行测试,因此新的方法来获得PL声称操作者的技能和判断6,7,9,13,15- 20,23-25。然而,简单性,低成本和标准的PL测试的快速性能给它优于提议迄今为止的不成功的替代品,尽管事实上,操作者的主观性在大多数的替代方法?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This research has been partially funded by a grant (Beca de Investigaciòn Ambiental) from the Servicio de Medio Ambiente de la Diputaciòn Provincial de Toledo (gran number 133/10) and the research project PEII-2014-025-P of the Junta de Comunidades de Castilla-La Mancha.

Materials

Shovel Any NA It is preferable a round point metal shovel so that it can penetrate easily in the soil.
Trowel Any NA It should be easy to handle both in field and laboratory, so approximately 500 g of soil should be the maximum of soil that could pick up.
Polyethylene bags Any NA The size of the bags depends on the collected soil volume. If we were interested in preserving the natural moisture, use sealing tape to close the bag.
Soil splitter  PROETISA S0012 It is not mandatory, because the quartering can be performed with the shovel, but in case of using it: it must be big enough to split several kg of sample in the cases of soils with large amounts of gravel or pebbles.
Oven SELECTA 2001254 The oven must be able to maintain constant temperature and should have some sort of slot or outlet opening to facilitate the release of water vapor.
Lab trays Any NA Metal trays are preferred over plastic because the first ones tolerate the oven temperatures better than the second ones.
Mortar and pestle MECACISA V112-02 A ceramic mortar is valid.  It is recommended to use a rubber covered pestle because if the pestle was of other different materials (like metal or a ceramic), it could break the sand particles.
0.40 mm sieve (or 0.425 mm sieve) FILTRA 0,400 (or 0,425) Make sure that the sieve mesh is in perfect conditions of use (it should not be neither broken or worn).
Brush Any NA It is useful for passing the soil during the sieving.
Wash-bottle Any NA It should have an approximate capacity of one litre and it should be easy to control the amount of water that it releases.
Distilled water Any NA Distilled water can be purchased or obtained by filtering from tap water (in this last case, a filtering system is necessary).
Nonabsorbent smooth glass plate  Any NA The plate should have a minimum area of approximately 30 × 30 cm.
Metal spatula Any NA The metal blade of the spatula must be flexible. Dry it with a paper after water-cleaning to prevent rusting.
Latex gloves Any NA Latex, vinyl, nitrile or other impermeable materials are valid. They should be thin enough to sense the soil with the hands.
Cling film Any NA Normal cling film is valid.
Airtight bags Any NA Remove the air before closing them.
Thread molder Any NA It is a tool designed in this experiment (drawings with dimmensions are included in this paper).
Steel pushers Any NA It is a tool designed in this experiment (drawings with dimmensions are included in this paper).
Damp cloth Any NA A normal damph cloth is valid.
Roll of paper Any NA Normall rolls of paper used to dry hands are valid.
Caliper Any NA It must have an accuracy of at least 0.1 mm.
Paper and pen Any NA Paper and pen are used to write the results.
Containers with covers Any NA Small cylindrical glass containers are valid. If they do not have covers, watch glasses can be used as covers. Covers are useful to avoid the loss of water during the test and also to prevent the dry soil absorbs moisture from the air after oven drying.
Precision or analytical balance BOECO BPS 52 PLUS It must have an accuracy of at least 0.01 g.
Protective gloves Any NA Protective gloves are used to catch the metal trays from the oven.
Tongs Any NA Tongs are used to catch the hot containers from the oven.
Desiccator MECACISA A036-01 A normal glass desiccator with silica gel is valid to prevent the dry soil absorbs moisture from the air after oven drying.

Referências

  1. Atterberg, A. Über die physikalische Bodenuntersuchung und über die Plastizität der Tone. Internationale Mitteilungen für Bodenkunde. 1, 10-43 (1911).
  2. . . ASTM Standard ASTM D 4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. , (2005).
  3. . . UNE 103-103-94. Determinaciòn del lìmite lìquido de un suelo por el método del aparato de Casagrande. , (1994).
  4. . . BS 1377-2. Methods of test for soils for civil engineering purposes-Part 2: Classification tests. , (1990).
  5. . . UNE 103-104-93. Determinaciòn del lìmite plástico de un suelo. , (1993).
  6. Whyte, I. L. Soil plasticity and strength: a new approach using extrusion. Ground Eng. 15 (1), 16-24 (1982).
  7. Temyingyong, A., Chantawaragul, K., Sudasna-na-Ayudthya, P. Statistical Analysis of Influenced Factors Affecting the Plastic Limit of Soils. Kasetsart J. (Nat. Sci.). 36, 98-102 (2002).
  8. Bobrowski, L. J., Griekspoor, D. M. Determination of the Plastic Limit of a Soil by Means of a Rolling Device. Geotech. Test. J., GTJODJ. 15 (3), 284-287 (1992).
  9. Rashid, A. S. A., Kassim, K. A., Katimon, A., Noor, N. M. Determination of Plastic Limit of soil using modified methods. MJCE. 20 (2), 295-305 (2008).
  10. . . ASTM Standard ASTM D 248. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). , (2000).
  11. Casagrande, A. Research on the Atterberg limits of soils. Public Roads. 13 (8), 121-136 (1932).
  12. Casagrande, A. Classification and Identification of Soils. Transactions, ASCE. 113, 901-991 (1948).
  13. Sokurov, V. V., Ermolaeva, N., Matroshilina, T. V. Plastic limit of clayey soils and its subjetive determination. Soil Mech. Found. Eng. 48 (2), 52-57 (2011).
  14. Andrade, F. A., Al-Qureshi, H. A., Hotza, D. Measuring the plasticity of clays: A review. Appl. Clay Sci. 51, 1-7 (2011).
  15. Harison, J. A. Using the BS cone penetrometer for the determination of the plastic limits of soils. Géotechnique. 38 (3), 433-438 (1988).
  16. Feng, T. W. Fall-cone penetration and water content relationship of clays. Géotechnique. 50 (2), 181-187 (2000).
  17. Feng, T. W. Using a small ring and a fall-cone to determinate the plastic limit. ASCE, J. Geotech. Geoenviron. Eng. 130 (6), 630-635 (2004).
  18. Lee, L. T., Freeman, R. B. Dual-weight fall cone method for simultaneous liquid and plastic determination. ASCE, J. Geotech. Geoenviron. Eng. 135 (1), 158-161 (2009).
  19. Sivakumar, V., Glynn, D., Cairns, P., Black, J. A. A new method of measuring plastic limit of fine materials. Géotechnique. 59 (10), 813-823 (2009).
  20. Sivakumar, V., O’Kelly, B. C., Henderson, L., Moorhead, C., Chow, S. H. Measuring the plastic limit of fine soils: an experimental study. P. I. Civil Eng. – Geotec. 168 (GE-1), 53-64 (2015).
  21. Wroth, C. P., Wood, D. M. The correlation of index properties with some basic engineering properties of soils. Can. Geotech. J. 15 (2), 137-145 (1978).
  22. Haigh, S. K., Vardanega, P. J., Bolton, M. D. The plastic limit of clays. Géotechnique. 63 (6), 435-440 (2013).
  23. Barnes, G. E. An apparatus for the plastic limit and workability of soils. P. I. Civil Eng. – Geotec. 162 (3), 175-185 (2009).
  24. Barnes, G. E. An apparatus for the determination of the workability and plastic limit of clays. Appl. Clay Sci. 80-81, 281-290 (2013).
  25. Moreno-Maroto, J. M., Alonso-Azcárate, J. An accurate, quick and simple method to determine the plastic limit and consistency changes in all types of clay and soil: The thread bending test. Appl. Clay Sci. 114, 497-508 (2015).
  26. Bain, J. A. A plasticity chart as an aid to the identification and assessment of industrial clays. Clay Miner. 9 (1), 1-17 (1971).

Play Video

Citar este artigo
Moreno-Maroto, J. M., Alonso-Azcárate, J. A Bending Test for Determining the Atterberg Plastic Limit in Soils. J. Vis. Exp. (112), e54118, doi:10.3791/54118 (2016).

View Video