Transgenic manipulations and genome editing are critical for functionally testing the roles of genes and cis-regulatory elements. Here a detailed microinjection protocol for the generation of genomic modifications (including Tol2-mediated fluorescent reporter transgene constructs, TALENs, and CRISPRs) is presented for the emergent model fish, the threespine stickleback.
The threespine stickleback fish has emerged as a powerful system to study the genetic basis of a wide variety of morphological, physiological, and behavioral phenotypes. The remarkably diverse phenotypes that have evolved as marine populations adapt to countless freshwater environments, combined with the ability to cross marine and freshwater forms, provide a rare vertebrate system in which genetics can be used to map genomic regions controlling evolved traits. Excellent genomic resources are now available, facilitating molecular genetic dissection of evolved changes. While mapping experiments generate lists of interesting candidate genes, functional genetic manipulations are required to test the roles of these genes. Gene regulation can be studied with transgenic reporter plasmids and BACs integrated into the genome using the Tol2 transposase system. Functions of specific candidate genes and cis-regulatory elements can be assessed by inducing targeted mutations with TALEN and CRISPR/Cas9 genome editing reagents. All methods require introducing nucleic acids into fertilized one-cell stickleback embryos, a task made challenging by the thick chorion of stickleback embryos and the relatively small and thin blastomere. Here, a detailed protocol for microinjection of nucleic acids into stickleback embryos is described for transgenic and genome editing applications to study gene expression and function, as well as techniques to assess the success of transgenesis and recover stable lines.
One fundamental component of understanding how biodiversity arises is determining the genetic and developmental bases of evolved phenotypic changes in nature. The threespine stickleback fish, Gasterosteus aculeatus, has emerged as an excellent model for studying the genetic basis of evolution. Sticklebacks have undergone many adaptive evolutionary changes as marine fish have colonized countless freshwater environments around the northern hemisphere, resulting in dramatic morphological, physiological, and behavioral changes1. The genomes of individuals from twenty-one stickleback populations have been sequenced and assembled, and a high density linkage map has been generated to further improve the assembly2,3. Genetic mapping experiments have identified genomic regions underlying evolved phenotypes4–6, and in a few cases, the functional roles of specific candidate genes have been tested7,8. A number of genomic regions underlying morphological changes have been identified with promising candidate genes, but these candidates have not yet been functionally tested9–12. In addition, sticklebacks are common models for studies of population genetics/genomics13,14, speciation15, behavior1, endocrinology16, ecotoxicology17, immunology18 and parasitology19. Future studies in each of these fields will benefit from the ability to perform functional genetic manipulations in sticklebacks. In addition to manipulating their coding sequences, the roles of candidate genes can be assessed by studying their cis-regulatory sequences and by functionally increasing, decreasing, or eliminating expression of the candidate gene. Microinjection and transgenesis methods in sticklebacks are well established7,8,20 and were initially developed using a meganuclease-mediated method21 first described in medaka22. The modified microinjection method presented here has been optimized for both Tol2-mediated transgenesis and recently developed genome editing reagents including TALENs and CRISPRs.
Changes to cis-regulatory elements are thought to be critical to morphological evolution, as cis-regulatory changes can avoid the negative pleiotropic consequences of coding mutations23. Therefore, testing and comparing putative cis-regulatory sequences has become a central goal of an increasing number of evolutionary studies. In addition, most human disease variants are regulatory variants24,25, and model vertebrate systems are sorely needed to study cis-regulatory element function and logic. Fish that fertilize their embryos externally in large numbers offer powerful vertebrate systems to study cis-regulation. The Tol2 transposon system, in which foreign DNA to be integrated in the genome is flanked by Tol2 transposase binding sites and co-injected with Tol2 transposase mRNA, works with high efficiency for successfully integrating plasmid constructs into fish genomes26–28. Typically, a potential enhancer is cloned upstream of a basal promoter (such as hsp70l29) and fluorescent reporter gene such as EGFP (enhanced green fluorescent protein) or mCherry in a Tol2 backbone and injected with transposase mRNA26. Observation of expression of the fluorescent reporter, either in injected embryos or offspring with stably integrated transgenes, provides information about the spatiotemporal regulation of gene expression driven by the putative enhancer. In further experiments, validated enhancers can be used to drive tissue-specific overexpression of genes of interest.
For analysis of larger cis-regulatory regions, high quality large-insert genomic libraries using bacterial artificial chromosomes (BACs) have been constructed for both marine and freshwater sticklebacks30. These BACs can be recombineered to replace a gene with a fluorescent reporter gene in the context of a large (150-200 kb) genomic region31. The fluorescent reporter is then expressed in a spatiotemporal pattern as determined by regulatory sequences within the BAC. For studies in fish, Tol2 sites can be added to the BAC to facilitate genomic integration32,33. In later stages of development when in situ hybridization is technically challenging, the fluorescent readout of the BAC can be used to study patterns of gene expression, as has been shown for stickleback Bone morphogenetic protein 6 (Bmp6)20. Additionally, fluorescent expression patterns in an individual can be tracked over time, which cannot be accomplished with in situ hybridization. BACs can also be used to add an additional copy of a genomic region to increase dosage of a gene of interest.
For the study of gene function, genome editing is an explosively expanding field that can be used to produce targeted changes to genomic sequences in a wide variety of organisms34. Transcription activator-like effector nucleases (TALENs) are modular, sequence-specific nucleases originally isolated from plant pathogens that can be precisely engineered to bind directly to a genomic sequence of choice and generate a double strand break35,36. Clustered regularly interspaced short palindromic repeats (CRISPR)/CAS systems were originally found in bacteria and use a guide RNA and the Cas9 protein to generate a break in a target DNA sequence complementary to the guide37. The subsequent repair of the double strand break created by both TALENs and CRISPRs often leaves behind a small insertion or deletion, which can disrupt the function of the target sequence35-37. In sticklebacks, TALENs have been used to disrupt gene expression by targeting an enhancer20, and both TALENs and CRISPRs have successfully produced mutations in coding sequences (unpublished data). A detailed protocol for the generation of CRISPRs for use in zebrafish can be used as a guideline to develop CRISPRs for sticklebacks38.
Transgenic and genome editing experiments require introduction of nucleic acids into a newly fertilized one-cell embryo. By introducing the transgene or genome-editing tool early in development, the number of genetically manipulated daughter cells in the embryo is maximized. Injected embryos are then visually screened for fluorescence or molecularly screened for genome modifications. If cells contributing to the germline are successfully targeted, the transgene or mutation can be passed on to a subset of offspring, even when post-injection lethality is high. The mosaic fish can be outcrossed or intercrossed and their offspring screened to recover the mutant alleles or a stably integrated transgene of interest. This protocol describes methods for introducing transgenes and genome editing reagents into one-cell stickleback embryos and monitoring for successful genomic modifications.
All fish work was approved by the Institutional Animal Care and Use Committee of the University of California-Berkeley (protocol number R330).
1. Prepare Nucleic Acids for Injection
Figure 1. Transposase mRNA gel. Purified transcription reaction product (1 µl) was heated to 65 °C, chilled on ice, and run on a 1% agarose gel with 0.5x TAE running buffer at 100 V. The sizes of the RNA ladder in kilobases (kb) are indicated to the left. The full length transposase mRNA is a bright band at ~2.2 kb. A small but acceptable amount of degraded or incomplete mRNA is seen below 2.2 kb. Please click here to view a larger version of this figure.
2. Prepare Injection Reagents
Reagent | Tol2 injection | BAC injection | TALEN injection | CRISPR injection |
Tol2 mRNA | 350 ng | 350 ng | – | – |
DNA | 150-200 ng plasmid | 200-300 ng BAC | – | – |
TALEN mRNA | – | – | 200 ng each | – |
CRISPR guide RNA | – | – | – | 200 ng |
Cas9 mRNA | – | – | – | 400 ng |
0.5% phenol red inDulbecco's PBS | 0.5 µl | 0.5 µl | 0.5 µl | 0.5 µl |
RNAse free water | to 5 µl | to 5 µl | to 5 µl | to 5 µl |
Table 1: Injection reagents. All mixtures should be prepared to a total volume on 5 µl and stored on ice.
3. Prepare Inject Rig and Needle for Microinjection
Note: These steps can usually be done after fertilizing the eggs.
Figure 2. Unbroken and broken microinjection needles. The top needle is unbroken and the tip of the bottom needle has been broken with forceps (arrow). Needles are filled with a solution containing 0.05% phenol red. Scale bar = 1 mm. Please click here to view a larger version of this figure.
4. Microinjection
Figure 3. Appearance of stickleback embryos before and after injection. All embryos are drawn from the perspective of looking down through the microscope (except for C' and G). (A) Before adding water, fertilized embryos have a uniform appearance with oil droplets floating near the top of the yolk. (B) After adding water, the chorion swells, revealing a blastomere that protrudes from the yolk and is visible in profile. (C) Rotation of the embryo so that the needle enters perpendicularly to the chorion and blastomere. (C') Lateral view of a needle that has punctured the chorion with the tip in the cytoplasm. (D) Injection into the cytoplasm results in a red spot with diffuse edges that fade over time. (E) Injection into the yolk underlying the cytoplasm results in a red spot with defined edges. (F) Injection into the yolk opposite the cytoplasm results in a pH-induced color shift from red to yellow. (G) Lateral view of injection outcomes, with Xs over sub-ideal injection locations. Please click here to view a larger version of this figure.
5. Post Injection Care
6. Analysis of Injection Results
For reporter gene transgenes that have enhancer activity, successful injection will result in specific, cellular expression of the transgene (Figure 4A, 4C). Injected fish can then be outcrossed to produce stable lines (example of a BAC stable line shown in Figure 4B). Injecting DNA into stickleback embryos typically results in far higher lethality than RNA alone. It is typical to see up to 50% (sometimes even more) lethality or malformation (see Figure 4D–F, 4I) after injecting Tol2 reporter constructs (similar to the previously described meganuclease method21). However, the results vary widely based on the specific construct, the embryo morphology, and skill level. For an active enhancer, 40-50% of embryos generally will show tissue-specific transgene expression, for example in the median and pectoral fins (Figure 5). The degree of background and nonspecific fluorescence (Figure 4G–I) varies widely based on the promoter used; the zebrafish hsp70l promoter tends to be leaky, especially in muscle and neural tissue, and BACs tend to have high background expression in the yolk (similar to Figure 4G). The carp beta actin41 promoter is less leaky but also drives considerably fainter GFP expression. Transmission of Tol2 plasmid transgenes can be high, with up to 100% of GFP+ F0 fish producing transgenic offspring (Table 2). However, the percent of offspring carrying the transgene varies widely, from <1% to 72% (Table 2). Saving only GFP+ injected embryos generally increases transmission efficiency. BACs tend to have far lower transgenesis rates, with only up to 10% of F0 injected stickleback embryos showing fluorescence in expected tissues. The transmission rate of BACs is lower than that of plasmid constructs, with only up to 14% of screened stickleback transmitting the BAC (Table 2), which is similar to the reported transmission rate of 15% in zebrafish32.
In contrast to the relatively low efficiency of BAC transgenesis, typically 70-100% of screened fish injected with TALENs have mosaic lesions (in n = 10 injected clutches that were screened for lesions). This number could be lower with a less efficient TALEN pair, and may vary with injection quality. Figure 6 shows a PCR/restriction digestion for 10 embryos from a single clutch injected with TALENs targeting a PvuII cut site within Tfap2a. An uncut amplicon in each of the injected embryos (lanes 1-10) indicates that a portion of the cells in each embryo carry lesions at the target locus, though each embryo is highly mosaic with a significant wild-type cut band. The amplicon from uninjected embryos in lanes 11-12 are fully digested with PvuII. TALEN-induced mutations are readily transmitted to the next generation. With two different TALEN sets, 50% and 90% of screened F0s transmitted lesions to offspring, with 20-90% of offspring carrying lesions in positive clutches (Table 3). While CRISPR/Cas9 efficiency has not been optimized in stickleback, with one CRISPR guide targeting Pitx2, one out of three injected embryos had lesions based on Sanger sequencing of a PCR product of the CRISPR target (the uncut band was sequenced following restriction digestion, Figure 7). The loss of sequence quality at the predicted cut site indicates a mix of molecular lesions are present. Fin clipping adult F0 fish and screening for lesions using a PCR and restriction digestion assay found 10/22 fish with somatic lesions in the fin. A representative subset of these animals are shown in Figure 8; individual #3 has a high percentage of DNA with lesions, while individual #2 has a low percentage of DNA with lesions.
Figure 4. Examples of injected embryos. (A) Mosaic embryo injected with an enhancer that drives GFP expression in pectoral (asterisk) and median fins (arrowhead) at 5 days post fertilization (dpf). Scale bar = 500 µm. (B) Stable line of a reporter BAC that drives GFP expression in the embryonic heart at 4 dpf. (C) Mosaic embryo injected with a Col2a1a enhancer that drives mCherry expression in the notochord at 4 dpf. The Col2a1a enhancer was cloned from stickleback DNA with primers 5'-CGCTCCTTGAGGGTTTGAGCTG-3' and 5'-ATACTGTGCTCATTTCGGCCGT-3' which amplify the conserved orthologous enhancer reported in Dale and Topczewski 201145. (D) Example of a normally developing injected embryo. (E–F) Examples of malformed embryos with injection trauma; E is lacking the left eye and F has necrotic tissue along the right side (arrowheads). (G) Example of diffuse GFP expression in yolk, likely the result of injection into the yolk rather than the blastomere. (H) Example of non-specific GFP expression in epidermis (arrowhead). (I) Bright, non-specific, granular GFP expression. Please click here to view a larger version of this figure.
Figure 5. Efficiency of reporter construct injection. Ten clutches were injected with a 190 bp stickleback Bmp6 enhancer construct that drives pectoral fin and median fin expression at 5 dpf20. From each clutch, at least 20 embryos were scored for having tissue-specific (pectoral and/or median fin) and/or nonspecific (all other tissues) GFP expression. The percentage of all surviving injected embryos having non-specific and tissue-specific expression is shown as a boxplot. Horizontal lines indicate the first quartile, median and third quartile; whiskers extend to datum within 1.5 IQR (interquartile range) of the first and third quartile. Data are adapted from Erickson et al. 2015. Please click here to view a larger version of this figure.
Figure 6. PCR and restriction digestion to screen for TALEN-induced lesions. A TALEN pair targeting Tfap2a was generated and injected as described. DNA was prepared as described above from 2 dpf injected embryos and a 297 bp fragment surrounding the TALEN target sequence was PCR amplified by a high fidelity DNA polymerase using primers 5'-GGGTCGTTGACGTGCGAGTAA-3' and 5'-AGCGGGACAACGTCATCACTTA-3'. Lanes 1-10 are injected, lanes 11-12 are uninjected, digested controls, and lanes 13-14 are uninjected, undigested controls. PvuII cuts the wild-type sequence into two approximately equal size bands. Uncut bands indicate presence of molecular lesions in the target sequence. All injected embryos in lanes 1-10 show signs of molecular lesions (undigested bands), however all of the embryos either have monoallelic mutations and/or are mosaic as they also have cut (wild-type) bands. Please click here to view a larger version of this figure.
Figure 7. Sanger sequencing from mosaic F0 CRISPR/Cas9 injected embryo. A CRISPR guide RNA (5'-GTGGACCAACCTCACGG-3') against Pitx2 (shown at top) was co-injected with Cas9 mRNA (transcribed from pCS2-nCas9n plasmid as described38) and embryos were screened for lesions using a restriction enzyme assay. The uncut band was gel extracted and sequenced by Sanger sequencing. The sequence quality degrades at the predicted cleavage site (arrow below) due to the mosaic mix of lesions present in the injected embryo. Please click here to view a larger version of this figure.
Figure 8. Analysis of CRISPR F0 caudal fin clips. DNA was prepared from fin clips from F0 juveniles raised from embryos injected with CRISPRs against Pitx2. The CRISPR/Cas9 target was amplified with primers 5'-CTCGGATGACCCTTCAAAAA-3' and 5'-GGCCCAAATTACCCACATTT-3', and the product was digested with EcoRI. Four individuals are shown; an uncut PCR product is on the left and digested PCR product is on the right for each numbered individual. Product the size of the uncut band (~230 bp) in the digested lane indicates the presence of a lesion. Individuals 2, 3 and 4 all show signs of a molecular lesion, indicated with asterisks, with varying mosaicism between individuals. Relevant ladder sizes are indicated on left. Please click here to view a larger version of this figure.
Construct | GFP offspring/total F0 screened fish (%) | % F1 offspring positive | note |
BAC A | 6/46 (13%) | 4-19% | |
BAC B | 1/41 (2%) | 4% | |
BAC C | 5/42 (12%) | 3-40% | |
BAC D | 3/22 (14%) | 5-15% | |
plasmid A | 2/38 (5%) | 2-5% | all F0 embryos screened, not just GFP+ |
plasmid B | 3/16 (19%) | <1-8% | all F0 embryos screened, not just GFP+ |
plasmid C | 1/11 (9%) | 10% | |
plasmid D | 2/11 (18%) | 1-45% | plasmid D injected into 2 genetic backgrounds |
plasmid D | 5/5 (100%) | 16-72% | |
plasmid E | 2/3 (67%) | 2-22% | |
plasmid F | 2/6 (33%) | <1-65% | |
plasmid G | 3/8 (38%) | 2-56% | |
plasmid H | 3/18 (17%) | not scored | |
plasmid I | 5/24 (21%) | not scored |
Table 2: Transgene transmission efficiencies for BACs and enhancer constructs. F0 injected embryos were raised to adulthood and then outcrossed to wild-type fish and the F1 offspring scored for GFP fluorescence. The number of F0 individuals that transmitted the transgene is expressed as a percentage of all screened F0 fish. The range of percentages of F1 offspring carrying the transgene is also shown for those clutches that had GFP positive fish.
TALEN | % F0 transmitting lesions | % F1 offspring positive |
A | 9/10 (90%) | 20-90% |
B | 4/8 (50%) | 20-72% |
Table 3: Transmission efficiencies for two TALEN pairs. F0 injected embryos were raised to adulthood and then outcrossed to wild-type fish and the F1 offspring screened for TALEN lesions. The percentage of injected individuals transmitting lesions is shown, as well as the range of percentages of offspring with lesions in those clutches that transmitted lesions. TALEN A targeted a Bmp6 enhancer20, TALEN B targeted Tfap2a (unpublished).
Injecting one-cell stickleback embryos for transgenesis or genome editing presents three main challenges. First, relative to zebrafish embryos, the stickleback embryonic chorion is tough and will often break needles. This problem can be partially overcome by using thicker and stronger glass micropipettes and injecting perpendicular to the chorion (see Protocol, Figure 2). Ensuring that as little water as possible is added to the embryos (just enough to cause the chorion to swell and lift away from the cell) helps to reduce chorion hardness. The chorion hardens over time, so working quickly after moistening the embryos is important. Keeping the embryos in a humidity chamber prior to injection so that they do not dry out is also critical. Some clutches and even individual embryos simply have much thicker and tougher chorions; sometimes moving on to the next embryo or trying with a new clutch is the easiest solution. It is much easier to skip one difficult embryo than to replace a damaged needle. Having backup needles ready will allow injections to continue in the case of needle breakage. When injecting BACs, it is common for the needle to clog. The needle can be unclogged by gently scraping or re-breaking the tip with forceps, or by using the constant air pressure switch to purge the clog.
Second, identifying the first cell in the embryo is challenging; it is often quite flattened and difficult for beginners to see, and is especially invisible when looking directly at it. Often the blastomere can only be seen as a slightly raised bump in profile. Therefore, it is best to identify the cell in profile (Figure 3B) and then gently rotate the embryo forward and to the side so the cell will face the end of the angled needle (though the cell will often be invisible from this angle; the darker color of the blastomere in Figure 3 is exaggerated for clarity).
Third, targeting the cytoplasm is also difficult, especially if the first cell is especially flat. Aiming for the fattest part of the blastomere (usually the center) improves the chance of injecting into cytoplasm. While injecting into the yolk near the cytoplasm can successfully produce transgenic fish, the efficiency seems to be increased and lethality decreased when the cytoplasm is targeted with a single needle puncture. Sometimes, individual clutches will have particularly thin blastomeres, such that avoiding the yolk is nearly impossible. Waiting longer than 25 min to begin injections may help (some clutches do not form a full size blastomere until ~45 min post fertilization), but if the blastomeres never increase in size, it is often easier to obtain a new clutch of eggs than to try to inject flattened cells.
Excessive lethality following injections may occur for several reasons. Blunt needles and/or too large a needle bore size may cause too much damage to the cell and/or cause cytoplasm to leak out. Some DNA constructs seem to be especially lethal; lowering the concentration of DNA may improve survival but lower transgenesis rates. Cleaning up plasmids first with a midiprep kit that contains an endotoxin rinse followed by a second PCR cleanup kit reduces construct toxicity. Finally, genome editing may produce a loss of function mutation that is lethal to developing embryos. Reducing the concentration of the CRISPR or TALEN mRNAs can increase the mosaicism of the embryo to prevent lethality, but may reduce mutant allele recovery efficiency.
A previously published protocol for generating transgenic sticklebacks using a meganuclease method21 reported a 4-7% transgene germline transmission rate from F0 founder fish. The Tol2 method reported here resulted in up to a 72% transgene germline transmission rate from F0 founder fish (indicating multiple genomic integrations). The previous study using a meganuclease method reported 40% of injected embryos showing specific GFP expression, similar to that reported here. Thus while similar rates of transgenic F0 founders are observed for transgenic fish generated by both the meganuclease and Tol2 methods, the germline transmission rate appears much higher for Tol2 mediated transgenics.
As genome editing technologies continue to advance, even more specific genetic manipulations will become possible in stickleback and other fish species. For example, directed repair46 and homologous recombination will allow allele swaps between marine and freshwater stickleback genomes, and modified CRISPRs can be used to specifically activate or inhibit gene expression47. These exciting technologies for genome editing and analysis will lead to new insights about the genetic basis of many interesting morphological, physiological, and behavioral phenotypes in sticklebacks and other fish species.
The authors have nothing to disclose.
This work was funded in part by NIH R01 #DE021475 (CTM), an NIH Predoctoral Training Grant 5T32GM007127 (PAE), and an NSF Graduate Research Fellowship (NAE). We thank Kevin Schwalbach for performing BAC recombineering and injections, Nick Donde for generating CRISPR Sanger sequencing data, and Katherine Lipari for helpful feedback on the injection protocol.
Stereomicroscope with transillumination | Leica | S6e/ KL300 LED | |
Manual micromanipulator | Applied Scientific Instrumentation | MM33 | Marzhauser M33 Micromanipulator |
Pressure Injecion system | Applied Scientific Instrumentation | MPPI-3 | |
Back pressure unit | Applied Scientific Instrumentation | BPU | |
Micropipette holder kit | Applied Scientific Instrumentation | MPIP | |
Magnetic base holder | Applied Scientific Instrumentation | Magnetic base | |
Foot switch | Applied Scientific Instrumentation | FSW | |
Iron plate (magnetic base) | Narishige | IP | |
Flaming/Brown Micropipette Puller | Sutter Instrument | P-97 | |
Disposable transfer pipettes | Fisher | 13-711-7M | |
0.5% phenol red in DPBS | Sigma | P0290 | injection tracer |
#5 forceps, biologie dumoxel | Fine Science Tools | 11252-30 | for needle breaking |
Micropipette Storage Jar | World Precision Instruments | E210 | holds needles |
6", 6 teeth per inch plaster drywall saw | Lenox | 20571 (S636RP) | hold eggs for injection |
13 cm x 13 cm glass plate | any hardware store | – | |
Borosilicate glass capillaries, 1.0 mm OD/0.58 mm ID | World Precision Instruments | 1B100-F4 | *harder glass than zebrafish injection capillaries |
150 x 15mm petri dish | Fisher | FB0875714 | raise stickleback embryos |
35 x 10mm petri dish | Fisher | 08-757-100A | store eggs pre-injection |
Instant Ocean Salt | Instant Ocean | SS15-10 | |
Sodium Bicarbonate | Sigma | S5761-500G | |
Tricaine methanesulfonate/MS-222 | Western Chemical Inc | MS222 | fish anaesthesia/euthanasia |
Sp6 transcription kit | Ambion | AM1340 | For transcription of TALENs and transposase mRNA |
RNeasy cleanup kit | Qiagen | 74104 | purify transposase or TALEN RNA |
QiaQuick PCR cleanup kit | Qiagen | 28104 | clean up plasmids for injection |
Proteinase K 20 mg/ml | Ambion | AM2546 | for DNA preparation |
Nucleobond BAC 100 kit | Clontech | 740579 | for BAC DNA preparation |
NotI | NEB | R0189L | |
Phusion polymerase | Fisher | F-530L | |
Qiagen PlasmidPlus Midi kit | Qiagen | 12943 | contains endotoxin rinse buffer |
QIAQuick Gel Extraction | Qiagen | 28704 | for sequencing induced mutations |
Phenol:chloroform:Isoamyl alcohol | Sigma | P2069-100ML | |
Sodium acetate | Sigma | S2889-250G | |
Ethanol (molecular biology grade) | Sigma | E7023-500ML | |
Agarose | Sigma | A9539 | |
50X Tris-acetate-EDTA buffer | ThermoFisher | B49 | |
0.5-10KbRNA ladder | ThermoFisher | 15623-200 | |
Nanodrop Spectrophotometer | Thermo Scientific | Nanodrop 2000 | |
Paraformaldehyde | Sigma | 158127-500G | |
10X PBS | ThermoFisher | 70011-044 | |
1kb Plus DNA Ladder | ThermoFisher | 10787-018 | |
Potassium Chloride | Sigma | P9541-500G | |
Magnesium Chloride | Sigma | M8266-100G | |
NP-40 | ThermoFisher | 28324 | |
Tween 20 | Sigma | P1379-500ML | |
Tris pH 8.3 | Teknova | T1083 | |
12-strip PCR tube | Thermo Scientific | AB-1113 |