Summary

使用非整合附加型质粒从冷冻血沉棕黄层诱导多能干细胞的产生

Published: June 05, 2015
doi:

Summary

诱导多能干细胞(iPS细胞)代表的患者特异性组织为临床应用和基础研究的来源。在这里,我们提出了一个详细的协议来重新编程从冷冻棕黄色大衣将获得使用非整合游离病毒质粒无iPSCs的人外周血单个核细胞(外周血单个核细胞)。

Abstract

体细胞可以通过迫使四个转录因子(Oct-4的,SOX-2,KLF-4,和c-Myc)的表达重编程为诱导性多能干细胞(iPS细胞),通常由人类胚胎干细胞中表达(胚胎干细胞) 。由于它们的相似性与人类胚胎干细胞,iPS细胞已成为潜在的患者特异性再生医学的重要工具,避免了与人类胚胎干细胞相关的伦理问题。为了获得适合于临床应用的细胞,转基因的无iPSCs的需要产生,以避免转基因激活,改变的基因表达和误导分化。此外,高效率的和廉价的重编程方法是必要的,以获得足够的iPSC用于治疗目的。鉴于这种需求,一个高效的非整合附加型质粒的方法是对的iPSC衍生的优选的选择。隔离,其中当前用于重编程的目的是最常见的细胞类型是成纤维细胞,需要组织活检,一个我nvasive外科手术的病人。因此,人外周血代表的iPSC一代最容易和最不侵入性组织。

在这项研究中,使用非整合附加型质粒具有成本效益和病毒 – 自由协议报从后全血离心分离,没有密度梯度分离从冷冻血沉棕黄层获得的人外周血单核细胞(外周血单个核细胞)的iPSCs的产生。

Introduction

在2006年,该基山中伸弥1展示首次从成年小鼠和人类体细胞可以通过四种重编程因子(Oct-4的,SOX-2,KLF-4,和异位表达被转换成多能状态c-Myc的),产生了所谓的诱导多能干细胞(iPS细胞)2。患者特异性的iPSC中的形态,增殖和分化成三胚细胞类型(中胚层,内胚层和外胚层)的能力方面非常类似于人类胚胎干细胞(胚胎干细胞),而缺乏相关的使用人类胚胎干细胞和旁路的伦理问题可能的免疫排斥反应3。因此,iPS细胞表现为患者特异性的细胞为基础研究,药物筛选,疾病建模,毒性的评价,和再生医学的目的4的最重要来源之一。

几种方法已用于iPSC的生成:病毒整合载体(逆转录病毒5,慢病毒6),病毒非整合载体(腺病毒7),仙台病毒8,BAC座子9,附加型载体10,蛋白质11或RNA递送12。虽然使用病毒介导的方法可导致高效率的重编程,病毒载体整合到宿主细胞,因此潜在随机插入 ​​突变的基因组中,基因表达,和沉默的转基因的再活化的分化过程中的永久改变,不能排除13。

使iPSCs的安全再生医学,已经作出努力来推导的iPSC未经外源DNA整合到细胞基因组中。虽然应纳税病毒载体和转座子被开发出来,它仍然是不清楚短载体序列,这不可避免地留在切除后的转导的细胞,和转座表达,是否可以诱导改变在细胞ular功能13。尽管其高重编程效率,仙台病毒代表一种昂贵的方法,并达到通授权的关注与开发的这个系统必须限制其应用在翻译研究的潜力公司。此外,需要对直接引入蛋白质和RNA的需要多个递送重新编程分子的固有技术局限性此介绍的,和总重编程效率是非常低的14。值得注意的是,具有成本效益的基础上,利用附加型质粒的病毒-自由和非整合的方法已被成功地报道了皮肤成纤维细胞15的再编程。具体而言,在本工作中,我们决定使用市售集成无附加型质粒,如先前报道10,15。

迄今为止,皮肤成纤维细胞代表了最流行 ​​施主小区类型5。然而,其他细胞来源已经更迭sfully重编程为iPS细胞包括角质形成细胞16,骨髓间充质干细胞17,脂肪基质细胞18,毛囊19与牙髓细胞20。这些细胞的分离,需要外科手术,并以建立原代细胞培养,需要在体外细胞扩增几个星期。

有鉴于此,起始细胞类型的选择是至关重要的,但同样重要的是能够从方便和较少侵入性的组织,例如血液产生的iPSC。两个脐带血单核细胞(CBMNCs)21,22和外周血单核细胞(外周血单个核细胞)14,22-24表示细胞为iPS细胞的推导合适来源。

虽然成人PBMNC重编程的效率比CBMNCs 22的低20-50倍,它们仍然是最方便的细胞类型为取样目的。在事实上,PBMNC取样有被微创的优点,此外,这些细胞不需要重新编程实验之前在体外广泛扩展。迄今为止,不同的协议已经报道,密度梯度分离后外周血单个核细胞可冷冻后冷冻和解冻天至数月并重新编程成iPS细胞22,23之前膨胀为几天。然而,就我们所知没有报道描述从冷冻的血沉棕黄层外周血单个核细胞的重编程。重要的是,没有密度梯度分离收集冷冻棕黄色大衣代表存储在从人口研究大型生物库,从而代表材料的生产的iPSC以避免进一步的样品采集的方便池中最常见的血液样本。

此处我们报告首次病毒无iPSCs的产生来自人类冷冻血沉棕黄层,根据先前描述的方案22。在此外,从密度梯度分离之后得到的冷冻外周血单个核细胞生成的iPSCs,对于非密度梯度纯化PBMNC结果的控制协议。

Protocol

外周血单个核细胞(外周血单个核细胞)后,从签署知情同意书和南蒂罗尔省的伦理委员会批准献血者健康人外周血标本中分离。实验是按照在表达赫尔辛基宣言的原则进行。所有的数据收集和分析了匿名。 1.分离外周血单个核细胞(外周血单个核细胞) 从全血中离心后的血沉棕黄层获得外周血单个核细胞,没有密度梯度分离。 收集8毫升静脉外周血成柠檬酸?…

Representative Results

在这项研究中的简单而有效的协议,用于病毒无iPSCs的由外周血单个核细胞从全血中离心分离和密度梯度分离报道后获得外周血单个核细胞的重新编程,比较后冷冻的血沉棕黄层中分离的重编程的产生。 图1A示出的示意图详细的协议。解冻后,分离的外周血单个核细胞,显示出典型的圆形形状,在特定的血液培养基中14天( 图1B)展开,然后转染了附加型质粒。经过10-15天…

Discussion

在过去,只有这样才能获得携带特定遗传变异的人类多能干细胞是招募家长进行胚胎植入前遗传学诊断,并产生从他们丢弃的囊胚31,32胚胎干细胞。使用方法重新编程,研究人员现在可以生成携带几乎所有的基因型患者iPS细胞。的可能性,以从患者的特定细胞系就易于访问的源是非常重要的,因为它允许病症的病理生理学和随后鉴定的新的治疗方法的研究。

在本研究?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano and the South Tyrolean Sparkasse Foundation.

Materials

Sodium Citrate buffered Venosafe Plastic Tube Terumo VF-054SBCS07
Ammodium chloride Sigma-Aldrich A9434
Potassium bicarbonate Sigma-Aldrich 60339
EDTA disodium powder Sigma-Aldrich E5134 0.5 M solution
Ficoll-Paque Premium  GE Healthcare Life Sciences 17-5442-02 Polysucrose solution for density gradient centrifugation
Iscove's modified Dulbecco's medium (IMDM)  Gibco 21056-023 No phenol red
Ham's F-12 Mediatech 10-080-CV
Insulin-Transferrin-Selenium-Ethanolamine (ITS -X) Gibco 51500-056  1X (Stock: 100X)
Chemically Defined Lipid Concentrate Gibco 11905031 1X (Stock: 100X)
Bovine Serum Albumin (BSA) Sigma-Aldrich A9418
L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate Sigma-Aldrich A8960
1-Thioglycerol Sigma-Aldrich M6145 Final Concentration at 200 µM
Recombinant Human Stem Cell Factor (SCF) PeproTech 300-07 100 ng/ml (Stock:100 µg/ml) 
Recombinant Human Interleukin-3 (IL-3) PeproTech 200-03 10 ng/ml (Stock: 10 µg/ml)
Recombinant Human Insulin-like Growth Factor (IGF-1) PeproTech 100-11 40 ng/ml (Stock: 40 µg/ml)
Recombinant Human Erythropoietin (EPO) R&D Systems  287-TC-500 2 U/ml (Stock: 50 U/ml)
Dexamethasone  Sigma-Aldrich D2915 1 μM (Stock: 1 mM)
Human Holo-Transferrin R&D Systems  2914-HT 100 μg/ml (Stock: 20 mg/ml)
Amniomax II Gibco 11269016 Medium for cytogenetic analysis
mTeSR1 StemCell Technologies 5850 Medium for iPSC feeder-free culture
Knockout DMEM Gibco 10829-018
Knockout Serum Replacement Gibco 10828-028
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122
L-Glutamine (200 mM) Gibco 25030-024
MEM Non-Essential Amino Acids Solution (100X) Gibco 11140-050
2-Mercaptoethanol  Gibco 31350-010 0.1 mM (Stock: 50 mM)
Sodium Butyrate Sigma-Aldrich B5887 0.25 mM (Stock: 0.5 M)
Recombinant Human FGF basic, 145 aa  R&D Systems  4114-TC 10 ng/ml (Stock: 10 µg/ml)
Y-27632 dihydrochloride Sigma-Aldrich Y0503  10 µM (Stock: 10 mM)
Fetal Defined Bovine Serum Hyclone SH 30070.03
EmbryoMax 0.1% Gelatin Solution Merck-Millipore ES-006-B
Matrigel Basement Membrane Matrix Growth Factor Reduced BD Biosciences 354230
Collagenase, Type IV Gibco 17104-019 1 mg/ml (Stock: 10 mg/ml)
Accutase PAA Laboratories GmbH L11-007 Cell detachment solution
Mouse Embryonic Fibroblast (CF1) Global Stem GSC-6201G 1*106 cells/6 well plate
Plasmid pCXLE-hOCT3/4-shp53-F Addgene  27077 1 µg (Stock: 1 µg/µl)
Plasmid pCXLE-hSK Addgene  27078 1 µg (Stock: 1 µg/µl)
Plasmid pCXLE-hUL Addgene  27080 1 µg (Stock: 1 µg/µl)
Plasmid pCXLE-EGFP Addgene  27082 1 µg (Stock: 1 µg/µl)
Alkaline Phosphatase Staining Kit Stemgent 00-0009
Anti-Stage-Specific Embryonic Antigen-4 (SSEA-4) Antibody Merck-Millipore MAB4304 1/250
Anti-TRA-1-60 Antibody Merck-Millipore MAB4360 1/250
Anti-TRA-1-81 Antibody Merck-Millipore MAB4381 1/250
Anti-Oct-3/4 Antibody Santa Cruz Biotechnology sc-9081 1/500
Anti-Nanog Antibody Santa Cruz Biotechnology sc-33759 1/500
Anti-Troponin I Antibody Santa Cruz Biotechnology sc-15368 1/500
Anti-α-Actinin (Sarcomeric) Antibody Sigma-Aldrich A7732 1/250
Neuronal Class III ß-Tubulin (TUJ1) Antibody Covance Research Products Inc  MMS-435P-100 1/500
Anti-Tyrosine Hydroxylase (TH) Antibody Calbiochem 657012 1/200
Alexa Fluor 488 Goat Anti-Mouse  Molecular Probes A-11029 1/1000
Alexa Fluor 555 Goat Anti-Rabbit Molecular Probes A-21429 1/1000
Ultra-Low Attachment Cell Culture 6-well plate Corning 3471
Trizol Reagent Ambion 15596-018  reagent for RNA extraction
SuperScript VILO cDNA Synthesis Kit Invitrogen 11754050 Reverse transcriptase kit
iTaq Universal SYBR Green Supermix Bio-Rad 172-5124
CFX96 Real-Time PCR Detection System Bio-Rad 185-5195
Experion Automated Electrophoresis System Bio-Rad 700-7000 Instrument to check RNA integrity
Experion RNA Highsense Analysis kit Bio-Rad 7007105 Reagent kit to check RNA integrity
Dissecting microscope (SteREO Discovery V12 ) Zeiss 495007
NeonTransfection System 100 µL Kit Invitrogen MPK10025 Reagent kit for electroporation
Neon Transfection System Invitrogen MPK5000 Instrument used for electroporation
NanoDrop UV/Vis Spectrophotometer Thermo Scientific ND-2000 Instrument for DNA/RNA quantification
EndoFree Plasmid Maxi Kit Qiagen 12362 Plasmid purification kit

Referências

  1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  2. Takahashi, K., Okita, K., Nakagawa, M., Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2 (12), 3081-3089 (2007).
  3. Drews, K., Jozefczuk, J., Prigione, A., Adjaye, J. Human induced pluripotent stem cells–from mechanisms to clinical applications. J. Mol. Med. (Berl). 90 (7), 735-745 (2012).
  4. Bayart, E., Cohen-Haguenauer, O. Technological overview of iPS induction from human adult somatic cells). Curr. Gene Ther. 13 (2), 73-92 (2013).
  5. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131 (5), 861-872 (2007).
  6. Sommer, A. G., et al. Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector. J. Vis. Exp. (68), e4327 (2012).
  7. Zhou, W., Freed, C. R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 27 (11), 2667-2674 (2009).
  8. Lieu, P. T., Fontes, A., Vemuri, M. C., Macarthur, C. C. Generation of induced pluripotent stem cells with CytoTune, a non-integrating Sendai virus. Methods Mol. Biol. 997, 45-56 (2013).
  9. Woltjen, K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458 (7239), 766-770 (2009).
  10. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods. 8 (5), 409-412 (2011).
  11. Kim, D., et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell. Stem Cell. 4 (6), 472-476 (2009).
  12. Warren, L., Ni, Y., Wang, J., Guo, X. Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci. Rep. 2, 657 (2012).
  13. Stadtfeld, M., Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24 (20), 2239-2263 (2010).
  14. Chou, B. K., et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 21 (3), 518-529 (2011).
  15. Kim, C., et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 494 (7435), 105-110 (2013).
  16. Aasen, T., et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26 (11), 1276-1284 (2008).
  17. Streckfuss-Bomeke, K., et al. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur. Heart J. 34 (33), 2618-2629 (2013).
  18. Miyoshi, N., et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell. Stem Cell. 8 (6), 633-638 (2011).
  19. Wang, Y., et al. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell. Rev. 9 (4), 451-460 (2013).
  20. Beltrao-Braga, P. C., et al. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant. 20 (11-12), 1707-1719 (2011).
  21. Haase, A., et al. Generation of induced pluripotent stem cells from human cord blood. Cell. Stem Cell. 5 (4), 434-441 (2009).
  22. Dowey, S. N., Huang, X., Chou, B. K., Ye, Z., Cheng, L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat. Protoc. 7 (11), 2013-2021 (2012).
  23. Staerk, J., et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell. Stem Cell. 7 (1), 20-24 (2010).
  24. Geti, I., et al. A practical and efficient cellular substrate for the generation of induced pluripotent stem cells from adults: blood-derived endothelial progenitor cells. Stem Cells Transl. Med. 1 (12), 855-865 (2012).
  25. Strober, W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. , Appendix 3-Appendix 3B (2001).
  26. Hasegawa, K., et al. Comparison of reprogramming efficiency between transduction of reprogramming factors, cell-cell fusion, and cytoplast fusion. Stem Cells. 28 (8), 1338-1348 (2010).
  27. Desjardins, P., Conklin, D. NanoDrop microvolume quantitation of nucleic acids. J Vis Exp. (45), 2565 (2010).
  28. Fleige, S., Pfaffl, M. W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 27 (2-3), 126-129 (2006).
  29. Meraviglia, V., et al. Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differentiation. 83 (5), 260-270 (2012).
  30. Caspersson, T., Zech, L., Johansson, C. Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp Cell Res. 253 (2), 302-304 (1999).
  31. Alikani, M., Munne, S. Nonviable human pre-implantation embryos as a source of stem cells for research and potential therapy. Stem Cell. Rev. 1 (4), 337-343 (2005).
  32. Tropel, P., et al. High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis. In Vitro Cell. Dev. Biol. Anim. 46 (3-4), 376-385 (2010).
  33. Hanna, J., et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 462 (72-73), 595-601 (2009).
  34. Li, H., et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature. 460 (7259), 1136-1139 (2009).
  35. Kim, K., et al. Epigenetic memory in induced pluripotent stem cells. Nature. 467 (7313), 285-290 (2010).
  36. Lindner, S. E., Sugden, B. The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid. 58 (1), 1-12 (2007).

Play Video

Citar este artigo
Meraviglia, V., Zanon, A., Lavdas, A. A., Schwienbacher, C., Silipigni, R., Di Segni, M., Chen, H. V., Pramstaller, P. P., Hicks, A. A., Rossini, A. Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids. J. Vis. Exp. (100), e52885, doi:10.3791/52885 (2015).

View Video