Summary

磁共振波谱的用途,用于对初级运动皮层新陈代谢双半球经颅电刺激效果的测量工具一

Published: November 19, 2014
doi:

Summary

This article aims to describe a basic protocol for combining transcranial direct current stimulation (tDCS) with proton magnetic resonance spectroscopy (1H-MRS) measurements to investigate the effects of bilateral stimulation on primary motor cortex metabolism.

Abstract

经颅直流电刺激(TDCS)是已经被越来越多地使用在过去的十年中的神经和精神疾病,如中风和抑郁症治疗中的神经调制技术。然而,其调节大脑兴奋,改善临床症状的能力背后的机制仍然知之甚少33。以帮助改善这种认识,质子核磁共振波谱(1 H-MRS)可以使用,因为它允许在体内量化脑代谢物如γ氨基丁酸(GABA)和谷氨酸的区域特异性方式41。事实上,最近的一项研究表明,1 H-MRS确实是一个有力的手段,以更好地了解TDCS的神经递质浓度34的影响。本文旨在描述完整的协议,使用MEGA-PRESS序列,在3个T组合TDCS(NeuroConn MR兼容刺激)与1 H-MRSuence。我们将介绍这表明电机功能障碍的治疗中风后,由初级运动皮层27,30,31双侧刺激大有希望的协议的影响。方法上要考虑的因素和可能的修改协议进行了讨论。

Introduction

应用电到人的大脑来调节其活性的思想自古进行了研究。事实上,从早在11 世纪作品已被发现,描述癫痫发作1的治疗中使用的鱼雷电鱼的。然而,它不是直到最近,非侵入性脑刺激已经接收在科学界广泛的兴趣,因为它显示出,以产生对认知功能和运动响应2的调节作用。而经颅磁刺激(TMS)已经被广泛自80年代初3的研究,在经颅直流电刺激(TDCS)最近的兴趣有所增加,因为它现在被认为是一种可行的治疗选择,适用范围广neuropathologies,如中风4,酒精成瘾5,和慢性疼痛6。 TDCS拥有像TMS的神经刺激技术的许多优点,例如因为它是相对便宜的,无痛,以及患者的耐受性,并便于携带,因而可以施用在床头7。事实上,病人只有一小部分会遇到刺激8中一个轻微的刺痛感。然而,这种感觉几秒钟后,9通常会消失。因此,TDCS可以让强大的双盲,假对照研究,因为大部分学员无法从真正的刺激9,10区分假刺激。

TDCS涉及一个恒定的低安培电流(1-2毫安)的诱导,通过设置在被检体的头皮表面上的电极施加到皮质。该电极通常置于生理盐水浸泡过的海绵上或直接用脑电图型糊头皮。进行TDCS研究中,四个主要的参数需要被实验者进行控制:刺激的1)的持续时间; 2)刺激的强度; 3)电极尺寸;和图4)的电极的蒙太奇。在标准协议中,“有效的”电极被定位在感兴趣的区域,而参考电极通常是放置在眶上区域。从朝向带负电的阴极带正电的阳极电流流过。上主运动皮层(M1)的TDC的作用是通过刺激的极性,其中阳极刺激增强的神经元群的兴奋性和阴极刺激降低了它11来确定。不像TMS,感生电流不足以在皮层神经元产生动作电位。在皮质兴奋性的变化被认为是由于膜的神经元的阈值,导致膜电位的任一所述的超极化,或取决于电流流8,11的方向上的神经元的去极化的一个便利的调制。的兴奋性变化的持续时间可以持续长达90分钟的抵销后的刺激,这取决于刺激持续时间11,12。

TDCS和康复运动

M1的已被广泛地用作刺激的靶由于通过TDCS引起兴奋性的变化可以通过定量运动诱发电位(MEP的)诱导的单脉冲TMS 3。早期研究显示,测量由TDCS极性特定的兴奋性变化的可能性已经使用M1作为刺激11,12的一个目标。从那时起,货币供应量M1一直保持的TDCS的主要目标之一,同时涉及临床和人群,因为它的运动功能,记忆形成重要的健康受试者,巩固和运动技能12项研究。

大脑依靠两个半球的运动区域进行运动14之间复杂的相互作用。当一个区域被破坏,患中风的例子后,跨半球相互作用改变。已经研究脑可塑性表明大脑的运动区适应这种修饰以不同的方式15。首先,受损区域的完整,周边​​区域可以成为overactived,从而抑制受损区域 – 一个称为帧内半球抑制过程。第二,受损区域的同源区域可以变得过度活跃,发挥抑制对受伤半球 – 一种称为半球间的抑制过程。受影响的M1,因此可以处罚两次:第一次由病变和第二的抑制来自未受影响货币供应量M1和M1的影响16的周边区域未来。最近的研究已经表明,在未受影响的半球兴奋性增加被链接到较慢的康复17,其已经被描述为适应不良半球间的竞争18。

了解后发生的可塑性中风可导致神经调节协议的发展,可以恢复大脑半球间的相互作用19。三大TDCS治疗已经提出了中风20,21例运动障碍。第一次治疗的目的是通过单方面的阳极刺激(A-TDCS)重新激活受伤运动皮层。在这种情况下,刺激的目的是直接增加活性损伤周围的区域,这被认为是为恢复必要的。实际上,研究已经显示改善患侧上或下肢的以下这种治疗22-26。第二处理用通过在完整M1施加单方面阴极 TDCS(三-TDCS)还原过度活化的对侧半球的目的开发的。在这里,刺激旨在通过interhemispehric 间接的相互作用越来越多的活动在病灶周围地区。这些研究结果表明改善马达functi的后C-TDCS 4,27-29。最后,第三个治疗的目的是结合了-TDCS的兴奋作用在受伤M1用c-TDCS利用双边 TDCS的抑制效果比未受影响的M1。结果双方TDCS 27,30,31后显示改善运动功能。此外,一项研究证明相比,无论单侧方法32以下的双边TDCS更大的改善。

TDCS的生理机制

尽管中风的治疗越来越多地使用TDCS的,生理机制及其潜在影响仍然不明33。更好地了解生理效应可能有助于开发出更好的治疗方案,并可能导致标准化的协议。如前所述,TDCS的效果可以持续长达90分钟的刺激11,12后的偏移量。因此,超极化/去极化进程不能完全解释长期持续的影响33,34。不同的假说已经提出了关于生理机制后遗症M1上包括改变神经递质的释放,蛋白质合成,离子通道的功能,或受体活性34,35底层TDCS。通过药理学研究显示anodal和阴极刺激M1上的兴奋性由谷氨酸N-甲基-D-天冬氨酸(NMDA)受体拮抗剂美沙芬36,37后的效果的抑制首次获得分析上市此事而相反的效果被示出使用NMDA受体激动剂38。 NMDA受体被认为是与学习和记忆功能,通过长时程增强(LTP)和长时程抑制(LTD),两者由谷氨酸能和GABA能神经元39,40介导的。动物研究,可在与该假说线,因为它们表明,一个-TDCS诱导LTP 13。

<P类=“j​​ove_content”>尽管我们的行动所依据TDCS的影响,药理协议存在很大的局限性机制的理解取得了重要进展。实际上,药物作用,不能作为在空间上具体为TDCS,特别是在人体实验的范围内,并且它们的效果的作用机制主要是由于突触后受体34。因此,有必要以更直接调查TDCS对人脑的影响。质子核磁共振谱(1 H-MRS)是一个很好的候选,因为它允许非侵入性检测体内的神经递质浓度的感兴趣的特定区域。这种方法是基于在大脑每含有质子的神经化学物质具有特定的分子结构,因此,产生了可以通过1 H-MRS 41来检测特定化学共振的原理。从在大脑的体积所获得的信号terest是从1至5 ppm的之间产生共鸣所有质子产生。所获取的神经化学物质被表示在频谱并绘制它们的化学位移与一些清晰可辨峰值的函数,但在来自不同的神经化学物质的许多谐振重叠。每个峰的信号强度正比于neurometabolite 41的浓度。可量化的神经化学物质的量取决于磁场42,43的强度。然而,低浓度的代谢产物,其通过非常强的共振遮蔽,难以量化,在较低的电场强度如3吨以获得关于这种重叠的信号的信息的一种方式是通过频谱编辑以除去强共振。一种这样的技术是一个MEGA-PRESS序列,它允许检测γ氨基丁酸(GABA)的信号44,45的。

只有少数研究探讨了对TDCS的影响用1 H-MRS在马达34,46和非运动区域的脑代谢47.斯塔格和合作者34评估一个-TDCS和c-TDCS,并在M1代谢假刺激的影响。他们发现了以下一-TDCS一个显著降低GABA的浓度,以及以下的c-TDCS一个显著减少谷氨酸+谷氨酰胺(采集Glx)和γ-氨基丁酸。在另一项研究中,据报道,引起一个-TDCS超过M1的变化的GABA浓度的量相关的运动学习46。

这些研究突出结合1 H-MRS与TDCS增加我们的生理机制TDCS对运动功能的影响基本的理解的潜力。另外,因为其行为效应是公研究和可直接关系到生理结果的使用,如-TDCS和c-TDCS超过M1的临床方案是有用的。因此,一个标准的协议,用于组合双边TDCS和1 H-MRS是使用3个T的MRI系统表现出在健康参与者。 Bihemispheric TDCS呈现单边哪里阴极或单侧anodal TDCS被应用在运动皮层34以前的MRS研究对比数据。该协议具体说明了刺激与NeuroConn刺激了西门子3个T扫描仪进行MEGA-PRESS 1 H-MRS。

Protocol

该研究是通过联合德Neuroimagerie Fonctionnelle和蒙特利尔大学的研究和社区伦理委员会,并做符合道德规范在赫尔辛基宣言规定。所有受试者签署知情同意书之后精心筛选了MRI的兼容性以及他们参与了经济补偿。 1. TDCS材料确保所有必要的材料都可以在实验开始(参见图1表)之前。 注:不同的电极尺寸可供TDCS。对于本研究中,两个5×7厘米的橡胶电极将?…

Representative Results

图6示出的所述VOI的位置位于手的M1中,其中采取了所有MRS措施的表示。在图6D,三维可视化显示设置在头皮上的假定初级运动皮层的TDCS电极的明确表示。 图7所示为代表的“EDIT OFF”和差异M1收购(“差异”)的光谱。对应于采集Glx,GABA + MM以及NAA峰可以清楚地看到。 图8示出了黄采集预TDCS和后TDCS在单个参加者的三种不同条?…

Discussion

本论文的目的是描述的标准协议相结合的TDCS和1 H-MRS使用3个T扫描仪。在下一节中,方法学因素进行讨论。

关键步骤
禁忌症筛查
以前的实验中,这是用于与使用TDCS和1 H-MRS的任何禁忌症的关键画面的参与者。使用下列排除标准推荐用于TDCS:精神病或神经病学史,心脏起搏器的情况下,一块金属植入在颅骨,昏厥史,惊厥史或药物…

Declarações

The authors have nothing to disclose.

Acknowledgements

该作品是由来自健康研究的加拿大学院和加拿大自然科学和工程研究理事会的资助。 ST是由来自健康研究的加拿大学院一凡尼尔加拿大研究生奖学金的支持。 MM承认生物技术研究中心(BTRC)批P41 RR008079和P41 EB015894(NIBIB),以及NCC P30 NS076408的支持。

我们要感谢罗曼Valabrègue(中心德NeuroImagerie德RECHERCHE – CENIR,巴黎,法国)和布莱斯Tiret(中心RECHERCHE DE L'学院Universiatire德Gériatrie(CRIUGM),加拿大蒙特利尔,小卖部A L'大气能源等辅助能源替代品(CEA),法国巴黎)用于开发处理工具,和爱德华J·奥尔巴赫(中心磁共振研究及放射科,美国明尼苏达大学,美国)。该MEGA-PRESS和FASTESTMAP序列开发由爱德华·J·奥尔巴赫和马乌戈热塔Marjańska和明尼苏达大学下一个C2P协议提供的。

Materials

DC-stimulator plus NeuroConn 30DCS01E MR compatible device
NuPrep preparation gel Weaver and Co. #10-61
Ten20 conductive paste Weaver and Co. #10-20-4
Electrode prepping pad Grass technologies MD0017 70% isopropyl alcohol and pumice
Saline solution Local drugstore sample 0.9% sodium chloride
Non permanent hydro-marker Sharpie SHPE20WH
SYNGO MR VB17 Siemens AG MRI software
MAGNETOM Trio A Tim System Siemens AG MRI scanner version
Matlab 2013a (Version 8.1) MathWorks Inc processing and analysis software
LCModel 6.3 LC MODEL inc see: s-provencher.com
FASTESTMAP Developers: Edward J. Auerbach and Małgorzata Marjańska shimming sequence
MEGA-PRESS Developers: Edward J. Auerbach and Małgorzata Marjańska MRS sequence

Referências

  1. Kellaway, P. The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull. Hist. Med. 20 (2), 112-137 (1946).
  2. Brunoni, A. R., et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stim. 5 (3), 175-195 (2011).
  3. Reis, J., Fritsch, B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. 24 (6), 590-596 (2011).
  4. Boggio, P. S., et al. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neuros. 25 (2), 123-129 (2007).
  5. Boggio, P. S., et al. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol. Depend. 92 (1-3), 55-60 (2008).
  6. Fregni, F., et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 122 (1-2), 197-209 (2006).
  7. Fusco, A., et al. The ABC of tDCS: Effects of Anodal, Bilateral and Cathodal Montages of Transcranial Direct Current Stimulation in Patients with Stroke-A Pilot Study. Stroke Res. Treat. , 837595 (2013).
  8. Nitsche, M. A., et al. Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 56, 255-276 (2003).
  9. Gandiga, P. C., Hummel, F. C., Cohen, L. G. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117 (4), 845-850 (2006).
  10. Poreisz, C., Boros, K., Antal, A., Paulus, W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72 (4-6), 208-214 (2007).
  11. Nitsche, M. A., Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 Pt 3, 633-639 (2000).
  12. Priori, A., Berardelli, A., Rona, S., Accornero, N., Manfredi, M. Polarization of the human motor cortex through the scalp. Neuroreport. 9 (10), 2257-2260 (1998).
  13. Fritsch, B., et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 66 (2), 198-204 (2010).
  14. Schulz, R., Gerloff, C., Hummel, F. C. Non-invasive brain stimulation in neurological diseases. Neuropharmacol. 64 (1), 579-587 (2013).
  15. Johansson, B. B. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol. Scand. 123 (3), 147-159 (2011).
  16. Kandel, M., Beis, J. -. M., Le Chapelain, L., Guesdon, H., Paysant, J. Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review. Annals Phys. Rehab. Med. 55 (9-10), 657-680 (2012).
  17. Hummel, F. C., Cohen, L. G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke. Lancet Neurol. 5 (8), 708-712 (2006).
  18. Murase, N., Duque, J., Mazzocchio, R., Cohen, L. G. Influence of interhemispheric interactions on motor function in chronic stroke. Annals Neurol. 55 (3), 400-409 (2004).
  19. Adeyemo, B. O., Simis, M., Macea, D. D., Fregni, F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front. Psychiatry. 3, 88 (2012).
  20. Butler, A. J., et al. A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors. J. Hand Ther. 26 (2), 162-170 (2013).
  21. Marquez, J., van Vliet, P., McElduff, P., Lagopoulos, J., Parsons, M. Transcranial direct current stimulation (tDCS): Does it have merit in stroke rehabilitation? A systematic review. Int. J. Stroke. , (2013).
  22. Hummel, F. C., et al. Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol. Aging. 31 (12), 2160-2168 (2010).
  23. Reis, J., et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. PNAS. 106 (5), 1590-1595 (2009).
  24. Hesse, S., et al. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor. Neurol. Neuros. 25 (1), 9-15 (2007).
  25. Madhavan, S., Weber, K. A., Stinear, J. W. Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp. Brain Res. 209 (1), 9-17 (2011).
  26. Tanaka, S., et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehab. Neural Rep. 25 (6), 565-569 (2011).
  27. Mahmoudi, H., et al. Transcranial direct current stimulation: electrode montage in stroke. Disabil. Rehabil. 33 (15-16), 1383-1388 (2011).
  28. Mansur, C. G., et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology. 64 (10), 1802-1804 (2005).
  29. Fregni, F., et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 16 (14), 1551-1555 (2005).
  30. Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., Schlaug, G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 75 (24), 2176-2184 (2010).
  31. Bolognini, N., et al. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehab. Neural Rep. 25 (9), 819-829 (2011).
  32. Vines, B. W., Cerruti, C., Schlaug, G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 9, 103 (2008).
  33. Edwardson, M. A., Lucas, T. H., Carey, J. R., Fetz, E. E. New modalities of brain stimulation for stroke rehabilitation. Exp. Brain Res. 224 (3), 335-358 (2013).
  34. Stagg, C. J., et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 29 (16), 5202-5206 (2009).
  35. Clark, V. P., Coffman, B. A., Trumbo, M. C., Gasparovic, C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a H magnetic resonance spectroscopy study. Neurosci. Lett. 500 (1), 67-71 (2011).
  36. Liebetanz, D., Nitsche, M. A., Tergau, F., Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 125 (10), 2238-2247 (2002).
  37. Nitsche, M. A., et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553 (Pt 1), 293-301 (2003).
  38. Nitsche, M. A., et al. Consolidation of human motor cortical neuroplasticity by D-cycloserine). Neuropsychopharmacol. 29 (8), 1573-1578 (2004).
  39. Shors, T. J., Matzel, L. D. Long-term potentiation: what’s learning got to do with it. Behav. Brain Sci. 20 (4), 597-614 (1997).
  40. Miyamoto, E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J. Pharmacol. Sci. 100 (5), 433-442 (2006).
  41. Puts, N. A. J., Edden, R. A. E. In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog. Nucl. Magn. Reson. Spectrosc. 60, 29-41 (2012).
  42. Tkác, I., Oz, G., Adriany, G., Ugurbil, K., Gruetter, R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn. Res. Med. 62 (4), 868-879 (2009).
  43. Marjanska, M., et al. Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T2 relaxation times and concentrations of cerebral metabolites. NMR Biomed. 25 (2), 332-339 (2012).
  44. Mescher, M., Merkle, H., Kirsch, J., Garwood, M., Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11 (6), 266-272 (1998).
  45. Mescher, M., Tannus, A., Johnson, M. O., Garwood, M. Solvent suppression using selective echo dephasing. J. Magn. Res. Series A. 123, 226-229 (1996).
  46. Stagg, C. J., Bachtiar, V., Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 21 (6), 480-484 (2011).
  47. Rango, M., et al. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn. Reson. Med. 60 (4), 782-789 (2008).
  48. Bastani, A., Jaberzadeh, S. a-tDCS Differential Modulation of Corticospinal Excitability: The Effects of Electrode Size. Brain Stim. 6 (6), 932-937 (2013).
  49. Yousry, T. A., et al. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 120 (Pt 1), 141-157 (1997).
  50. Gruetter, R., Tkác, I. Field mapping without reference scan using asymmetric echo-planar techniques). Magn. Res. Med. 43 (2), 319-323 (2000).
  51. Tkác, I., Starcuk, Z., Choi, I. Y., Gruetter, R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Res. Med. 41 (4), 649-656 (1999).
  52. Provencher, S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Res. Med. 30 (6), 672-679 (1993).
  53. Oz, G., et al. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology. 64 (3), 434-441 (2005).
  54. Henry, P. -. G., et al. Brain energy metabolism and neurotransmission at near-freezing temperatures: in vivo (1)H MRS study of a hibernating mammal. J. Neurochem. 101 (6), 1505-1515 (2007).
  55. Westman, E., et al. In vivo 1H-magnetic resonance spectroscopy can detect metabolic changes in APP/PS1 mice after donepezil treatment. BMC Neurosci. 10, 33 (2009).
  56. DaSilva, A. F., Volz, M. S., Bikson, M., Fregni, F. Electrode positioning and montage in transcranial direct current stimulation. J. Vis. Exp. (51), (2011).
  57. Nitsche, M. A., et al. Transcranial direct current stimulation: State of the art. Brain Stim. 1 (3), (2008).
  58. Brunoni, A. R., et al. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 14 (8), 1133-1145 (2011).
  59. Zaitsev, M., Speck, O., Hennig, J., Büchert, M. Single-voxel MRS with prospective motion correction and retrospective frequency correction. NMR Biomed. 23, 325-332 (2010).
  60. Henry, P. -. G., et al. Proton-observed carbon-edited NMR spectroscopy in strongly coupled second-order spin systems. Magn. Res. Med. 55 (2), 250-257 (2006).
  61. Govindaraju, V., Young, K., Maudsley, A. A. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 13 (3), 129-153 (2000).
  62. Pfeuffer, J., Tkác, I., Provencher, S. W., Gruetter, R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J. Magn. Res. 141 (1), 104-120 (1999).
  63. Adler, C. M., et al. Neurochemical effects of quetiapine in patients with bipolar mania: a proton magnetic resonance spectroscopy study. J. Clin. Psychopharmacol. 33 (4), 528-532 (2013).
  64. Aoki, Y., Inokuchi, R., Suwa, H. Reduced N-acetylaspartate in the hippocampus in patients with fibromyalgia: A meta-analysis. Psychiatry Res. 213 (3), 242-248 (2013).
  65. Zahr, N. M., et al. In glutamate measured with magnetic resonance spectroscopy: behavioral correlates in aging. Neurobiol. Aging. 34 (4), 1265-1276 (2013).
  66. Reyngoudt, H., et al. Does visual cortex lactate increase following photic stimulation in migraine without aura patients? A functional (1)H-MRS study. J. Headache Pain. 12 (3), 295-302 (2011).
  67. Nenadic, I., et al. Superior temporal metabolic changes related to auditory hallucinations: a (31)P-MR spectroscopy study in antipsychotic-free schizophrenia patients. Brain Struct. Funct. , (2013).
  68. Currie, S., et al. Magnetic resonance spectroscopy of the brain. Postgrad. Med. J. 89 (1048), 94-106 (2013).
  69. Stagg, C. J. Magnetic Resonance Spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. NeuroImage. , (2013).
  70. Bottomley, P. A. Spatial localization in NMR spectroscopy in vivo. Ann. N. Y. Acad. Sci. , 333-348 (1987).
  71. Frahm, J., et al. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn. Res. Med. 9 (1), 79-93 (1989).
  72. Gussew, A., et al. Absolute quantitation of brain metabolites with respect to heterogeneous tissue compositions in (1)H-MR spectroscopic volumes. Mag. Res. Mat. Phys. 25 (5), 321-333 (2012).
  73. Gasparovic, C., et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Res. Med. 55 (6), 1219-1226 (2006).
  74. Nitsche, M. A., et al. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin. Neurophysiol. 115 (10), 2419-2423 (2004).
  75. Miranda, P. C., Faria, P., Hallett, M. What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS?. Clin. Neurophysiol. 120 (6), 1183-1187 (2009).
  76. Faria, P., Leal, A., Miranda, P. C. Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis. IEEE Engineering Med. Biol. Soc. 2009, 1596-1599 (2009).
  77. Schestatsky, P., Morales-Quezada, L., Fregni, F. Simultaneous EEG monitoring during transcranial direct current stimulation. J. Vis. Exp. (76), 1-11 (2013).
  78. Reidler, J. S., Zaghi, S., Fregni, F., Coben, R., Evans, J. R. Chapter 12. Neurophysiological Effects of Transcranial Direct Current Stimulation. Neurofeedback and neuromodulation techniques and applications. , (2011).
  79. Zheng, X., Alsop, D. C., Schlaug, G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage. 58 (1), 26-33 (2011).
  80. Antal, A., Polanía, R., Schmidt-Samoa, C., Dechent, P., Paulus, W. Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage. 55 (2), 590-596 (2011).
  81. Brunoni, A. R., et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry. 70, 383-391 (2013).
check_url/pt/51631?article_type=t

Play Video

Citar este artigo
Tremblay, S., Beaulé, V., Proulx, S., Lafleur, L., Doyon, J., Marjańska, M., Théoret, H. The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism. J. Vis. Exp. (93), e51631, doi:10.3791/51631 (2014).

View Video