Summary

Et restriktionsenzym Baseret Kloning metode til at vurdere den<em> In vitro</em> Replikationskapacitet af HIV-1 subtype C Gag-MJ4 Kimære Vira

Published: August 31, 2014
doi:

Summary

HIV-1 pathogenesis is defined by both viral characteristics and host genetic factors. Here we describe a robust method that allows for reproducible measurements to assess the impact of the gag gene sequence variation on the in vitro replication capacity of the virus.

Abstract

The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.

Introduction

Bestemme både vært og virale karakteristika, der påvirker HIV-1 patogenese og sygdomsudviklingen er altafgørende for en rationel vaccine design. Det cellulære immunrespons er et centralt element i indsatsen mod hiv-1-infektion menneskelige immunsystem. Cytotoksiske T-lymfocytter (CTL) er nødvendige i den indledende kontrol af akut viræmi og tillade værten at etablere en stabil tilstand (setpunkt) virusbelastning 1,2. Eksperimentel udtømning af disse effektorcellerne resulterer i tab af viral kontrol 3,4. På trods af dette, flygte mutationer opstår i det virale genom, der undergrave CTL anerkendelse af virusinficerede celler 5-9.

Visse HLA-alleler er blevet forbundet med lavere virale belastninger og langsommere sygdomsprogression, herunder B * 57 B * 27 og B * 81 10-15. En del af den beskyttende fordel af HLA klasse I alleler kan tilskrives det faktum, at de er målrettet mod funktionelt begrænsede områder af genomet, såsom Gagog vælge efter escape mutationer, der reducerer evnen af virusset til at replikere in vitro 16-21. Selv flygte fra det cellulære immunsystem er gavnlig for virus i forbindelse med valg HLA klasse I allel, kan virkningen af disse mutationer har differentierede konsekvenser for værten ved overførsel til en HLA-mismatchede individuel 22,23. Derfor vil forstå effekten af ​​transmitterede HLA-associerede escape mutationer på viral replikation kapacitet være vigtigt at fremme vores forståelse af tidlig hiv-1 patogenese.

Selvom der er gjort store fremskridt for at identificere og karakterisere fitness defekter af enkelte kvitterede mutationer forbundet med specifikke HLA klasse I-alleler 24-29, naturligt forekommende HIV-1-isolater har unikke og komplekse fodspor af HLA-associeret polymorfier, sandsynligvis som følge af HLA medieret immun tryk forskellige immunogenetisk baggrunde 30. APorrige analyse Goepfert et al. viste, at en akkumulering af HLA-associerede mutationer i de transmitterede Gag sekvenser afledt fra 88 akut inficerede Zambianerne blev associeret med en reduktion i setpunkt viral belastning 31. Dette antydede, at overførslen af ​​skadelige kvitterede mutationer, specielt i Gag, at HLA-uoverensstemmende modtagere giver en klinisk fordel, og kan skyldes svækket viral replikation. Bevæger sig fremad, er det bydende nødvendigt at undersøge, hvordan komplekse kombinationer af Gag polymorfier indenfor naturligt forekommende isolater arbejder i fællesskab for at definere karakteristika for den transmitterede virus såsom replikation kapacitet, og hvor tidligt replikation kan til gengæld påvirke HIV-1 kliniske parametre og sen-fase patogenese.

Brockman et al. Først påvist en sammenhæng mellem replikation kapacitet gag-Pro sekvenser isoleret under kronisk fase infektion og viral belastning i både subtype C og B-infektioner32-35. Den eksperimentelle tilgang, der præsenteres i disse undersøgelser, selv om det er relevant for behandlingen af in vitro-replikation kapacitet sekvenser afledt af kronisk inficerede individer, har flere tekniske forbehold og begrænsninger, der gør studerer HIV-1 replikationskapacitet i undertype C akut inficerede individer vanskelig. Denne metode bygger på rekombination af befolkningen baserede PCR-amplificerede sekvenser i undertype B NL4-3 proviruset, der blev afledt dels fra LAV, et laboratorium tilpasset virus lager 36. Virus generation blev opnået ved co-transfektion af en CEM-baserede T-celle linie 37 med PCR amplikoner og fordøjet deltace- gag-pro NL4-3 DNA. Denne metode kræver, at udvækst af virus over en periode på uger til måneder, hvilket potentielt skråstilling arten af det udvundne virus lager i forhold til den virale quasispecies in vivo og derfor ændring af måling af replikation kapacitet in vitro. Denne metode Ier mere egnet til at studere kronisk inficerede individer, hvor det effektivt vælges for virus med den højeste replikative kapacitet, og hvor kloning mange forskellige virusvarianter fra et stort antal af kronisk inficerede individer er ganske arbejdskrævende og derfor ikke er mulig. Men inden for en akut inficeret individ, der generelt 1-2 varianter til stede, og dermed eliminere risikoen for skråstilling arten af det udvundne virus lager gennem in vitro selektionstryk, giver mulighed for en mere nøjagtig vurdering af in vitro-replikation kapacitet. For det andet kræver denne metode rekombinerer subtype C gag-Pro sekvenser i en undertype B afledt rygrad, og kunne indføre backbone uforenelighed bias i analysen. På grund af disse begrænsninger, må et stort antal sekvenser analyseres med henblik på at overvinde eventuelle fordomme indført.

Her beskriver vi en alternativ eksperimenterende hensigtsver egnet til at studere sekvenser afledt fra subtype C akut inficerede individer. Vi bruger et restriktionsenzym baseret kloning strategi om at introducere gag-gen afledt af akut infektion tidspunkter af HIV-1 subtype C inficerede individer i subtype C provirale rygrad, MJ4. Anvendelsen af MJ4 som en fælles rygrad til at klone gag generne er afgørende for analysen af subtype C afledte sekvenser. MJ4 er afledt fra et primært isolat 38, og således ville være mindre tilbøjelige til at indføre bias som følge af undertype inkompatibilitet mellem rygraden og gag-genet. Hertil kommer, at tilgang til brug baseret begrænsning kloning enzym tillader den provirale konstruktioner, der skal transficeres direkte ind i 293T-celler og til genopretning af en klonal virusstamme identisk med den klonede gag-sekvensen.

Den præsenteres nedenfor metoden er en high throughput metode til at vurdere replikation kapacitet af subtype C afledt Gag-MJ4kimæriske vira. Transfektion i 293T-celler er ligetil og inddrivelse af virus tager kun tre dage. In vitro-replikation kapacitet analyseres på samme CEM-CCR5 baseret T-celle linie skabt af Brockman et al. 37, men ved hjælp af vigtige protokol ændringer er nødvendige for en vellykket replikation subtype, K MJ4 kimære virus. Brugen af ​​et passende T-celle linie snarere end PBMC'er giver mulighed for et stort antal subtype C MJ4-kimære virus, der skal testes med høj analyse reproducerbarhed. Endelig, ved hjælp af et radioaktivt mærket revers transkriptase-assay til kvantificering af virus i supernatanten er mere omkostningseffektiv end ved anvendelse af kommercielt tilgængelige p24 ELISA kits. Det giver også en højere dynamikområde, som var vigtigt for at detektere både dårligt og stærkt replikerende virus inden for samme analyse og til påvisning af subtile forskelle i replikation mellem isolater.

Konklusionen er, at den metode, der præsenteres her tilladt forden grundige undersøgelse af replikation kapacitet gag-sekvenser afledt fra HIV-1 subtype C akut inficerede individer fra Zambia, og som skrevet, kan også udvides til at studere andre undertype C inficerede befolkninger. Blev observeret en høj grad af variation i replikation kapacitet mellem forskellige Gag isolater. Desuden var vi i stand til at vise en statistisk sammenhæng mellem replikation kapacitet transmitterede Gag og indstille punkt viral belastning samt med CD4 + tilbagegang over en tre-årig periode 39. Sådanne resultater understreger vigtigheden af ​​at studere, hvordan transmitterede virale egenskaber, såsom replikation kapacitet, interagere med værtens immunsystem til at påvirke patogenese under tidlig infektion og vil være integreret for at udvikle effektiv vaccine indgreb samt behandling.

Protocol

1. Forstærkning af HIV-1 gag-genet fra inficerede, frossen plasma Uddrag viralt RNA fra 140 pi optøede HIV-1-inficerede plasma ved hjælp af en udvinding kit. Når det er muligt, straks videre til cDNA-syntese efter RNA-ekstraktion som frosne viralt RNA giver de bedste amplifikationsprodukter resultater. Hvis det er muligt, der er nedsat PCR mester mix til første runde DNA-amplifikation og opbevares ved 4 ° C forud for viral RNA-ekstraktion. Reverse-transskribere cDNA…

Representative Results

For at kunne udføre denne protokol, hvilket skaber en proviralt plasmid i stand til at samle fuldt funktionelle, smitsomme Gag-MJ4 kimærer, må man være meget omhyggelig med at generere de relevante PCR amplikonerne. Vurdering af, om PCR har genereret den passende størrelse gag amplikon er afgørende. Produkterne bør være inden for 100 basepar (bp) af cirka 1.700 bp amplikon afbildet i figur 1A. Den nøjagtige længde af dette fragment vil variere afhængigt af gag-genet under un…

Discussion

På grund af længde og tekniske karakter af denne protokol, der er flere trin, der er afgørende for både en vellykket opførelse af kimære Gag-MJ4 plasmider samt til kvantificering af viral replikation kapacitet. Selvom restriktionsenzym baseret kloning strategi for indførelsen af udenlandske gag generne i MJ4 skitseret i denne protokol har mange fordele i forhold til tidligere anvendte rekombination baserede metoder, kan protokollen være teknisk udfordrende, hvis kritiske trin ikke følges nøjagtigt. </…

Declarações

The authors have nothing to disclose.

Acknowledgements

The investigators thank all the volunteers in Zambia who participated in this study and all the staff at the Zambia Emory HIV Research Project in Lusaka who made this study possible. The investigators would like to thank Jon Allen, Smita Chavan, and Mackenzie Hurlston for technical assistance and sample management. We would also like to thank Dr. Mark Brockman for his discussions and generous donation of the GXR25 cells.

This study was funded by R01 AI64060 and R37 AI51231 (EH) and the International AIDS Vaccine Initiative. This work was made possible in part by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the study authors and do not necessarily reflect the views of USAID or the United States Government. This work also was supported, in part, by the Virology Core at the Emory Center for AIDS Research (Grant P30 AI050409). DC and JP were supported in part by Action Cycling Fellowships. This work was supported in part by the Yerkes National Primate Research Center base grant (2P51RR000165-51). This project was also funded in part by the National Center for Research Resources P51RR165 and is currently supported by the Office of Research Infrastructure Programs/OD P51OD11132.

Materials

Name of the Reagent Company Catalogue number Comments
PCR reagents
GOF: 5' ATTTGACTAGCGGAGGCTAGAA 3' IDT DNA Custom Oligo 25nmol, standard desalt
VifOR: 5' TTCTACGGAGACTCCATGACCC 3' IDT DNA Custom Oligo 25nmol, standard desalt
GagInnerF1:
5' AGGCTAGAAGGAGAGAGATG 3'
IDT DNA Custom Oligo 25nmol, standard desalt
BclIDegRev2:
5' AGTATTTGATCATAYTGYYTYACTTTR 3'
IDT DNA Custom Oligo 25nmol, standard desalt
MJ4For1b: 5' CGAAATCGGCAAAATCCC 3' IDT DNA Custom Oligo 25nmol, standard desalt
MJ4Rev: 5' CCCATCTCTCTCCTTCTAGC 3' IDT DNA Custom Oligo 25nmol, standard desalt
BclIRev: 5' TCTATAAGTATTTGATCATACTGTCTT 3' IDT DNA Custom Oligo 25nmol, standard desalt
GagF2: 5' GGGACATCAAGCAGCCAT 3' IDT DNA Custom Oligo 25nmol, standard desalt
For3: 5' CTAGGAAAAAGGGCTGTTGGAAATG 3' IDT DNA Custom Oligo 25nmol, standard desalt
GagR6: 5' CTGTATCATCTGCTCCTG 3' IDT DNA Custom Oligo 25nmol, standard desalt
Rev3: 5' GACAGGGCTATACATTCTTACTAT 3' IDT DNA Custom Oligo 25nmol, standard desalt
Rev1: 5' AATTTTTCCAGCTCCCTGCTTGCCCA 3' IDT DNA Custom Oligo 25nmol, standard desalt
CoolRack PCR 96 XT Biocision BCS-529
CoolRack M15 Biocision BCS-125
Nuclease free water Fisher SH30538FS Manufactured by Hyclone
QIAamp Viral RNA Mini Kit Qiagen 52906
Simport PCR 8 Strip Tubes, Blue (Flat Cap) Daigger EF3647BX
SuperScript III one-step RT-PCR system Life Technologies/Invitrogen 12574035
Phusion Hot-start II DNA polymerase Fisher F-549L 
PCR Nucleotide Mix Roche 4638956001
Agarose, high gel strength Fisher 50-213-128
TAE 10X Life Technologies/Invitrogen AM9869
Promega 1kb DNA ladder Fisher PRG5711 Manufactured by Promega
Sybr Safe DNA Gel Stain, 10000x Life Technologies/Invitrogen S33102
Wizard SV Gel and PCR Clean-Up System Promega A9282
Razor blades, single-edged Fisher 12-640 Manufactured by Surgical Design
Thermocycler, PTC-200 MJ Research
Microbiology & Cloning reagents
LB Agar, Miller Fisher BP1425-2
LB Broth, Lennox Fisher BP1427-2
Sterile 100mm x 15mm polystyrene petri dishes Fisher 08-757-12
Ampicillin sodium salt Sigma-Aldrich A9518-5G
Falcon 14ml Polypropylene round-bottom tubes BD Biosciences 352059
NgoMIV restriction endonuclease New England BioLabs R0564L
BclI restriction endonuclease New England BioLabs R0160L
HpaI restriction endonuclease New England BioLabs R0105L
T4 DNA Ligase, 5U/μL Roche 10799009001
JM109 competent cells, >10^8 cfu/μg  Promega L2001
PureYield plasmid miniprep system Promega  A1222
Safe Imager 2.0 Blue Light Transilluminator Invitrogen G6600
Microfuge 18 centrifuge Beckman Coulter 367160
Cell culture reagents
Amphyl cleaner/disinfectant Fisher 22-030-394
Fugene HD, 1 mL VWR PAE2311 Manufactured by Promega
Hexadimethrine bromide (Polybrene) Sigma-Aldrich H9268-5G
Costar Plates, 6-well, flat Fisher 07-200-83 Manufactured by Corning Life
Costar Plates, 24-well, flat Fisher 07-200-84 Manufactured by Corning Life
Costar Plates, 96-well, round Fisher 07-200-95 Manufactured by Corning Life
Flasks, Corning filter top/canted neck, 75 cm^2 Fisher 10-126-37
Flasks, Corning filter top/canted neck, 150 cm^2 Fisher 10-126-34 Manufactured by Corning Life
Conical Tubes, 50ml, blue cap Fisher 14-432-22 Manufactured by BD Biosciences
Conical Tubes, 15ml, blue cap Fisher 14-959-70C   Manufactured by BD Biosciences
Trypsin-EDTA Fisher MT25052CI Manufactured by Mediatech
RPMI, 500 ml Life Technologies/Invitrogen 11875-119
DMEM, 500 ml Life Technologies/Invitrogen 11965-118
Penicillin/Streptomycin/Glutamine, 100X Life Technologies/Invitrogen 10378-016
PBS with magnesium and calcium, 500ml Life Technologies/Invitrogen 14040-133
PBS without magnesium and calcium Life Technologies/Invitrogen 20012-050
Sarstedt tubes, assorted colors Sarstedt 72.694.996
Reservoir Trays for Multichannel, 55ml Fisher 13-681-501
DEAE-Dextran Fisher NC9691007
Corning 96 well clear V bottom tissue culture treated microplate Fisher 07-200-96 Manufactured by Corning Life
HEPES, 1M Buffer Solution Life Technologies/Invitrogen 15630-080
FBS, Defined, 500 ml Fisher SH30070 03
X-gal VWR PAV3941 Manufactured by Promega
Glutaraldehyde, Grade II, 25% in H2O Sigma-Aldrich G6257-100ML
1M Magnesium chloride solution Sigma-Aldrich M1028-100ML
Formaldehyde solution, for molecular biology, 36.5% Sigma-Aldrich F8775-500ML
Potassium hexacyanoferrate(II) trihydrate Sigma-Aldrich P9387-100G
Potassium hexacyanoferrate(III) Sigma-Aldrich P8131-100G
Allegra X15-R centrifuge Beckman Coulter 392932
TC10 automated cell counter Bio-Rad 1450001
VistaVision inverted microscope VWR
Reverse-Transcriptase Quantification Assay reagents
dTTP, [α-33P]- 3000Ci/mmol, 10mCi/ml, 1 mCi Perkin-Elmer NEG605H001MC
1M Tris-Cl, pH 8.0 Life Technologies/Invitrogen 15568025 Must be adjusted to pH 7.8 with KOH
2M potassium chloride (KCl) Life Technologies/Invitrogen AM9640G Adjust to 1M solution
0.5M EDTA Life Technologies/Invitrogen 15575-020
Nonidet P40 Roche 11333941103
Polyadenylic acid (Poly rA) potassium salt  Midland Reagent Co. P-3001
Oligo d(T) primer  Life Technologies/Invitrogen 18418-012
Dithiothreitol (DTT) Sigma-Aldrich 43815-1G
SR, Super Resolution Phosphor Screen, Small Perkin-Elmer 7001485
Corning Costar Thermowell 96 well plate model (M) Polycarbonate Fisher 07-200-245 Manufactured by Corning Life
Corning 96 Well Microplate Aluminum Sealing Tape, Nonsterile Fisher 07-200-684 Manufactured by Corning Life
DE-81 anion exchange paper Whatman 3658-915
Trisodium citrate dihydrate Sigma-Aldrich S1804-1KG
Sodium Chloride Fisher S671-3
Autoradiography cassette Fisher FB-CA-810
Cyclone storage phoshpor screen Packard

Referências

  1. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M., Oldstone, M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. Journal of virology. 68, 6103-6110 (1994).
  2. Koup, R. A., et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. Journal of virology. 68, 4650-4655 (1994).
  3. Jin, X., et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. The Journal of experimental medicine. 189, 991-998 (1999).
  4. Schmitz, J. E., et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 283, 857-860 (1999).
  5. Brumme, Z. L., et al. Marked epitope- and allele-specific differences in rates of mutation in human immunodeficiency type 1 (HIV-1) Gag, Pol, and Nef cytotoxic T-lymphocyte epitopes in acute/early HIV-1 infection. Journal of virology. 82, 9216-9227 (2008).
  6. Leslie, A. J., et al. HIV evolution: CTL escape mutation and reversion after transmission. Nature medicine. 10, 282-289 (2004).
  7. Phillips, R. E., et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 354, 453-459 (1991).
  8. Price, D. A., et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proceedings of the National Academy of Sciences of the United States of America. 94, 1890-1895 (1997).
  9. Goulder, P. J., et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature. 3, 212-217 (1997).
  10. Tang, J., et al. Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1. Journal of virology. 76, 8276-8284 (2002).
  11. Prentice, H. A., et al. HLA-B*57 versus HLA-B*81 in HIV-1 infection: slow and steady wins the race. Journal of virology. 87, 4043-4051 (2013).
  12. Migueles, S. A., et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proceedings of the National Academy of Sciences of the United States of America. 97, 2709-2714 (2000).
  13. Leslie, A., et al. Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. Journal of virology. 84, 9879-9888 (2010).
  14. Kaslow, R. A., et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature medicine. 2, 405-411 (1996).
  15. Altfeld, M., et al. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS. 17, 2581-2591 (2003).
  16. Kiepiela, P., et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nature medicine. 13, 46-53 (2007).
  17. Mothe, B., et al. Definition of the viral targets of protective HIV-1-specific T cell responses. Journal of translational medicine. 9, 208 (2011).
  18. Peyerl, F. W., Barouch, D. H., Letvin, N. L. Structural constraints on viral escape from HIV- and SIV-specific cytotoxic T-lymphocytes. Viral immunology. 17, 144-151 (2004).
  19. Rolland, M., et al. Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PloS one. 3, e1424 (2008).
  20. Wagner, R., et al. Molecular and functional analysis of a conserved CTL epitope in HIV-1 p24 recognized from a long-term nonprogressor: constraints on immune escape associated with targeting a sequence essential for viral replication. J Immunol. 162, 3727-3734 (1999).
  21. Wang, Y. E., et al. Protective HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associated with viral escape mutations located in highly conserved regions of human immunodeficiency virus type 1. Journal of virology. 83, 1845-1855 (2009).
  22. Chopera, D. R., et al. Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage. PLoS pathogens. 4, e1000033 (2008).
  23. Crawford, H., et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. The Journal of experimental medicine. 206, 909-921 (2009).
  24. Boutwell, C. L., et al. Frequent and variable cytotoxic-T-lymphocyte escape-associated fitness costs in the human immunodeficiency virus type 1 subtype B Gag proteins. Journal of virology. 87, 3952-3965 (2013).
  25. Brockman, M. A., et al. Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. Journal of virology. 81, 12608-12618 (2007).
  26. Crawford, H., et al. Compensatory mutation partially restores fitness and delays reversion of escape mutation within the immunodominant HLA-B*5703-restricted Gag epitope in chronic human immunodeficiency virus type 1 infection. Journal of virology. 81, 8346-8351 (2007).
  27. Martinez-Picado, J., et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. Journal of virology. 80, 3617-3623 (2006).
  28. Schneidewind, A., et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. Journal of virology. 81, 12382-12393 (2007).
  29. Wright, J. K., et al. Impact of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity. Journal of virology. 86, 3193-3199 (2012).
  30. Kawashima, Y., et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature. 458, 641-645 (2009).
  31. Goepfert, P. A., et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. The Journal of experimental medicine. 205, 1009-1017 (2008).
  32. Brockman, M. A., et al. Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. Journal of virology. 84, 11937-11949 (2010).
  33. Huang, K. H., et al. Progression to AIDS in South Africa is associated with both reverting and compensatory viral mutations. PloS one. 6, e19018 (2011).
  34. Wright, J. K., et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters. Journal of virology. 84, 10820-10831 (2010).
  35. Wright, J. K., et al. Influence of Gag-protease-mediated replication capacity on disease progression in individuals recently infected with HIV-1 subtype. C. Journal of virology. 85, 3996-4006 (2011).
  36. Adachi, A., et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of virology. 59, 284-291 (1986).
  37. Brockman, M. A., Tanzi, G. O., Walker, B. D., Allen, T. M. Use of a novel GFP reporter cell line to examine replication capacity of CXCR4- and CCR5-tropic HIV-1 by flow cytometry. Journal of virology. 131, 134-142 (2006).
  38. Ndung’u, T., Renjifo, B., Essex, M. Construction and analysis of an infectious human Immunodeficiency virus type 1 subtype C molecular clone. Journal of virology. 75, 4964-4972 (2001).
  39. Prince, J. L., et al. Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS pathogens. 8, e1003041 (2012).
  40. Ostrowski, M. A., Chun, T. W., Cheseboro, B., Stanley, S. K., Tremblay, M., et al. Detection assays for HIV proteins. Current protocols in immunology / edited by John E. Coligan … [et al.]. 12 (Unit 12 15), .
  41. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 77, 61-68 (1989).
  42. Inoue, H., Nojima, H., Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene. 96, 23-28 (1990).
  43. Bichara, M., Pinet, I., Schumacher, S., Fuchs, R. P. Mechanisms of dinucleotide repeat instability in Escherichia coli. Genética. 154, 533-542 (2000).
  44. Ackerson, B., Rey, O., Canon, J., Krogstad, P. Cells with high cyclophilin A content support replication of human immunodeficiency virus type 1 Gag mutants with decreased ability to incorporate cyclophilin A. Journal of virology. 72, 303-308 (1998).
  45. Dudley, D. M., et al. A novel yeast-based recombination method to clone and propagate diverse HIV-1 isolates. BioTechniques. 46, 458-467 (2009).
  46. Ganser-Pornillos, B. K., von Schwedler, U. K., Stray, K. M., Aiken, C., Sundquist, W. I. Assembly properties of the human immunodeficiency virus type 1 CA protein. Journal of virology. 78, 2545-2552 (2004).
  47. Forshey, B. M., von Schwedler, U., Sundquist, W. I., Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. Journal of virology. 76, 5667-5677 (2002).
  48. Gottlinger, H. G., Dorfman, T., Sodroski, J. G., Haseltine, W. A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proceedings of the National Academy of Sciences of the United States of America. 88, 3195-3199 (1991).
check_url/pt/51506?article_type=t

Play Video

Citar este artigo
Claiborne, D. T., Prince, J. L., Hunter, E. A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses. J. Vis. Exp. (90), e51506, doi:10.3791/51506 (2014).

View Video