Summary

限制性内切酶克隆方法,以评估<em>在体外</em> HIV-1 C亚型的Gag-MJ4嵌合病毒的复制能力

Published: August 31, 2014
doi:

Summary

HIV-1 pathogenesis is defined by both viral characteristics and host genetic factors. Here we describe a robust method that allows for reproducible measurements to assess the impact of the gag gene sequence variation on the in vitro replication capacity of the virus.

Abstract

The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.

Introduction

确定主机和影响HIV-1发病机理和疾病进展是至关重要的合理的疫苗设计的病毒特征。细胞免疫应答是HIV-1感染人体免疫反应的重要组成部分。细胞毒性T淋巴细胞(CTL)所必需的急性病毒血症的初始控制,并允许主机建立一个稳定的状态(设定点)的病毒载量1,2。这些效应细胞的实验耗尽导致的病毒控制3,4的损失。尽管这样,逃避突变发生在病毒基因组的颠覆CTL识别病毒感染的细胞5-9的范围内。

某些HLA等位基因已低病毒载量和较慢的疾病进展,包括B * 57,B * 27和B * 81 10-15关联。的HLA I类等位基因的保护益处部分可以归因于它们的目标基因组的功能约束区域,例如Gag的事实并选择该减少病毒在体外 16-21复制的能力逃逸突变。虽然从细胞免疫系统逃逸,是在选择中的HLA I类等位基因的上下文中的病毒有益的,这些突变的影响可以具有用于发送时主机差动后果与HLA-错配的个体22,23。因此,了解病毒复制能力传输的HLA相关逃逸突变的影响,以促进我们的早期HIV-1发病机制的理解将是非常重要的。

尽管已经取得了很大的进展,以识别和描述与具体的HLA-I类等位基因24-29相关个人逃逸突变的适应度的缺陷,自然产生的HIV-1毒株的HLA相关基因多态性的独特而复杂的脚印,而产生的人类白细胞抗原可能不同的免疫遗传背景的30介导的免疫压力。在APrevious分析,格普费特 。结果显示,从88急性感染赞比亚得到的传输加格序列的HLA相关的基因突变的积累与设定点病毒载量的31减少有关。这个建议的有害逃逸突变的传输,特别是在加格,对HLA不匹配的收件人提供临床益处,并且可能是由于减毒病毒复制。展望未来,就必须研究如何复杂的自然产生的菌株中的Gag基因多态性的组合协同工作来定义传播病毒的特性,例如复制能力,以及如何早期复制可能反过来影响HIV-1的临床指标和晚期发病。

布罗克曼等人首次证实GAG-Pro序列的过程中慢性期感染和病毒载量在这两个亚型C和B感染隔离复制能力之间的联系32-35。实验方法在这些研究中提出,虽然适当的审查由慢性感染个体的序列的体外复制能力,有几个技术上的警告和限制,使学习在C亚型HIV-1的复制能力急性感染的个体困难。此方法依赖于种群基于PCR扩增的序列引入B亚型NL4-3原病毒,这是来自部分来自LAV的重组,实验室适于病毒原液36。病毒的产生是完成通过共转染在CEM基于T细胞系37与PCR产物的消化Δ-GAG-亲 NL4-3的DNA。这种方法需要病毒在一段周的向外生长到几个月,这可能歪斜回收的病毒原液的性质有关的病毒准种的体内 ,并因此改变的体外复制能力的测定。这种方法Iš更适合于研究慢性感染的个体,它有效地用于病毒选择具有最高的复制能力,并在那里从大量的慢性感染个体的克隆许多不同的病毒变异体是相当劳力密集的,因此是不可行的。然而,急性感染个体中,有一般一到两个变体存在,并且因此,可以消除通过在体外选择压力偏斜所回收的病毒原液的性质的风险,使得在体外复制能力的更精确的评估。其次,这个方法需要重组C亚型的gag-Pro序列成B亚型来自骨干,并且可以引入骨干不相容偏压入分析。由于这些限制,大量的序列必须以克服引入的任何可能存在的偏差进行分析。

在这里,我们描述了一个另类的实验Appro公司ACH适合学习从C亚型急性感染个体的序列。我们用限制性内切酶克隆策略,引进源自HIV-1 C亚型感染者急性感染时间点进入C亚型前病毒的骨干,MJ4 gag基因。使用MJ4的为其中克隆的gag基因的共同骨架为C亚型的序列的分析至关重要。 MJ4从初级分离38演变而来,因此也不太可能引入偏倚由于骨干网和gag基因的亚型不兼容。另外,使用酶和限制性克隆的方法允许在原病毒构建体直接转染到293T细胞中,并在一个克隆的病毒原液的恢复相同的克隆的gag序列。

下面介绍的方法是一种高通量的方法来评估C亚型的复制能力得出的Gag-MJ4嵌合病毒。转染到293T细胞中是直接的和病毒的回收率只需要三天。 体外复制能力的测定在由布罗克曼等人创建的相同的CEM-CCR5的基于T细胞系37 ,除了使用所必需的成功复制重要协议的修改的C亚型MJ4嵌合病毒。使用合适的T细胞系,而不是外周血单个核细胞的允许大量的C亚型MJ4-嵌合病毒对以高测定再现性测试。最后,使用放射性标记的逆转录酶测定法对病毒的上清液中定量更具成本比使用市售的p24 ELISA试剂盒有效。这也给了一个更高的动态范围,这是用于检测相同的检测中均不佳,高病毒复制和用于检测菌株之间的细微差别复制很重要。

总之,这里提出的方法允许对从HIV-1 C亚型来源的插科打诨序列的复制能力的深入研究急性赞比亚感染者,并作为书面,也可以扩展到其他学习C亚型病毒感染的人群。观察高度变异在不同的Gag菌株之间的复制能力。此外,我们能够显示发送加格的复制能力和设定点的病毒载量的CD4 +下降之间以及与统计协会在3年的时间39。这样的结果凸显学习如何传播的病毒特征,比如复制能力的重要性,与宿主免疫系统在感染早期,影响发病机制相互作用,将整体开发有效的疫苗干预以及治疗。

Protocol

1,扩增HIV-1的gag基因从受感染,冰冻血浆提取病毒RNA从140微升使用提取试剂盒解冻的HIV-1感染的血浆。 如果可行后提取RNA作为解冻病毒RNA产生最佳的放大效果,立即进行cDNA合成。如果可能的话,建立的PCR master mix首轮DNA扩增和储存在4℃之前,病毒RNA提取。 从RNA反转录的cDNA,并使用逆转录酶,并在单步RT-PCR的热稳定DNA聚合酶扩增的第一轮的DNA产物。 取的RN…

Representative Results

为了正确地执行该协议,该协议创建能够组装功能齐全的,传染性的Gag-MJ4嵌合体的前病毒质粒,伟大必须小心,以生成适当的PCR扩增子。确定PCR是否已经生成的适当大小的gag扩增子是关键的。产品应在图1A中所示的大约1700碱基对的扩增子的100个碱基对(bp)。这个片段的确切长度将取决于所研究的gag基因的不同而不同。接着,MJ4分子克隆的5'长末端重复序列(LTR)部?…

Discussion

由于长度和这个协议的技术性质,有几个步骤,这对嵌合的Gag-MJ4质粒均构建成功以及对病毒复制的能力的定量的关键。虽然限制性内切酶克隆的策略引进国外GAG基因导入MJ4本协议所列拥有超过以前使用重组为基础的方法具有许多优点,该协议可以是技术上的挑战,如果不采取关键步骤精确。

首先,这是绝对必要的使用已在主管菌株缺乏DCM和大坝的DNA甲基化酶生成MJ4质?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The investigators thank all the volunteers in Zambia who participated in this study and all the staff at the Zambia Emory HIV Research Project in Lusaka who made this study possible. The investigators would like to thank Jon Allen, Smita Chavan, and Mackenzie Hurlston for technical assistance and sample management. We would also like to thank Dr. Mark Brockman for his discussions and generous donation of the GXR25 cells.

This study was funded by R01 AI64060 and R37 AI51231 (EH) and the International AIDS Vaccine Initiative. This work was made possible in part by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the study authors and do not necessarily reflect the views of USAID or the United States Government. This work also was supported, in part, by the Virology Core at the Emory Center for AIDS Research (Grant P30 AI050409). DC and JP were supported in part by Action Cycling Fellowships. This work was supported in part by the Yerkes National Primate Research Center base grant (2P51RR000165-51). This project was also funded in part by the National Center for Research Resources P51RR165 and is currently supported by the Office of Research Infrastructure Programs/OD P51OD11132.

Materials

Name of the Reagent Company Catalogue number Comments
PCR reagents
GOF: 5' ATTTGACTAGCGGAGGCTAGAA 3' IDT DNA Custom Oligo 25nmol, standard desalt
VifOR: 5' TTCTACGGAGACTCCATGACCC 3' IDT DNA Custom Oligo 25nmol, standard desalt
GagInnerF1:
5' AGGCTAGAAGGAGAGAGATG 3'
IDT DNA Custom Oligo 25nmol, standard desalt
BclIDegRev2:
5' AGTATTTGATCATAYTGYYTYACTTTR 3'
IDT DNA Custom Oligo 25nmol, standard desalt
MJ4For1b: 5' CGAAATCGGCAAAATCCC 3' IDT DNA Custom Oligo 25nmol, standard desalt
MJ4Rev: 5' CCCATCTCTCTCCTTCTAGC 3' IDT DNA Custom Oligo 25nmol, standard desalt
BclIRev: 5' TCTATAAGTATTTGATCATACTGTCTT 3' IDT DNA Custom Oligo 25nmol, standard desalt
GagF2: 5' GGGACATCAAGCAGCCAT 3' IDT DNA Custom Oligo 25nmol, standard desalt
For3: 5' CTAGGAAAAAGGGCTGTTGGAAATG 3' IDT DNA Custom Oligo 25nmol, standard desalt
GagR6: 5' CTGTATCATCTGCTCCTG 3' IDT DNA Custom Oligo 25nmol, standard desalt
Rev3: 5' GACAGGGCTATACATTCTTACTAT 3' IDT DNA Custom Oligo 25nmol, standard desalt
Rev1: 5' AATTTTTCCAGCTCCCTGCTTGCCCA 3' IDT DNA Custom Oligo 25nmol, standard desalt
CoolRack PCR 96 XT Biocision BCS-529
CoolRack M15 Biocision BCS-125
Nuclease free water Fisher SH30538FS Manufactured by Hyclone
QIAamp Viral RNA Mini Kit Qiagen 52906
Simport PCR 8 Strip Tubes, Blue (Flat Cap) Daigger EF3647BX
SuperScript III one-step RT-PCR system Life Technologies/Invitrogen 12574035
Phusion Hot-start II DNA polymerase Fisher F-549L 
PCR Nucleotide Mix Roche 4638956001
Agarose, high gel strength Fisher 50-213-128
TAE 10X Life Technologies/Invitrogen AM9869
Promega 1kb DNA ladder Fisher PRG5711 Manufactured by Promega
Sybr Safe DNA Gel Stain, 10000x Life Technologies/Invitrogen S33102
Wizard SV Gel and PCR Clean-Up System Promega A9282
Razor blades, single-edged Fisher 12-640 Manufactured by Surgical Design
Thermocycler, PTC-200 MJ Research
Microbiology & Cloning reagents
LB Agar, Miller Fisher BP1425-2
LB Broth, Lennox Fisher BP1427-2
Sterile 100mm x 15mm polystyrene petri dishes Fisher 08-757-12
Ampicillin sodium salt Sigma-Aldrich A9518-5G
Falcon 14ml Polypropylene round-bottom tubes BD Biosciences 352059
NgoMIV restriction endonuclease New England BioLabs R0564L
BclI restriction endonuclease New England BioLabs R0160L
HpaI restriction endonuclease New England BioLabs R0105L
T4 DNA Ligase, 5U/μL Roche 10799009001
JM109 competent cells, >10^8 cfu/μg  Promega L2001
PureYield plasmid miniprep system Promega  A1222
Safe Imager 2.0 Blue Light Transilluminator Invitrogen G6600
Microfuge 18 centrifuge Beckman Coulter 367160
Cell culture reagents
Amphyl cleaner/disinfectant Fisher 22-030-394
Fugene HD, 1 mL VWR PAE2311 Manufactured by Promega
Hexadimethrine bromide (Polybrene) Sigma-Aldrich H9268-5G
Costar Plates, 6-well, flat Fisher 07-200-83 Manufactured by Corning Life
Costar Plates, 24-well, flat Fisher 07-200-84 Manufactured by Corning Life
Costar Plates, 96-well, round Fisher 07-200-95 Manufactured by Corning Life
Flasks, Corning filter top/canted neck, 75 cm^2 Fisher 10-126-37
Flasks, Corning filter top/canted neck, 150 cm^2 Fisher 10-126-34 Manufactured by Corning Life
Conical Tubes, 50ml, blue cap Fisher 14-432-22 Manufactured by BD Biosciences
Conical Tubes, 15ml, blue cap Fisher 14-959-70C   Manufactured by BD Biosciences
Trypsin-EDTA Fisher MT25052CI Manufactured by Mediatech
RPMI, 500 ml Life Technologies/Invitrogen 11875-119
DMEM, 500 ml Life Technologies/Invitrogen 11965-118
Penicillin/Streptomycin/Glutamine, 100X Life Technologies/Invitrogen 10378-016
PBS with magnesium and calcium, 500ml Life Technologies/Invitrogen 14040-133
PBS without magnesium and calcium Life Technologies/Invitrogen 20012-050
Sarstedt tubes, assorted colors Sarstedt 72.694.996
Reservoir Trays for Multichannel, 55ml Fisher 13-681-501
DEAE-Dextran Fisher NC9691007
Corning 96 well clear V bottom tissue culture treated microplate Fisher 07-200-96 Manufactured by Corning Life
HEPES, 1M Buffer Solution Life Technologies/Invitrogen 15630-080
FBS, Defined, 500 ml Fisher SH30070 03
X-gal VWR PAV3941 Manufactured by Promega
Glutaraldehyde, Grade II, 25% in H2O Sigma-Aldrich G6257-100ML
1M Magnesium chloride solution Sigma-Aldrich M1028-100ML
Formaldehyde solution, for molecular biology, 36.5% Sigma-Aldrich F8775-500ML
Potassium hexacyanoferrate(II) trihydrate Sigma-Aldrich P9387-100G
Potassium hexacyanoferrate(III) Sigma-Aldrich P8131-100G
Allegra X15-R centrifuge Beckman Coulter 392932
TC10 automated cell counter Bio-Rad 1450001
VistaVision inverted microscope VWR
Reverse-Transcriptase Quantification Assay reagents
dTTP, [α-33P]- 3000Ci/mmol, 10mCi/ml, 1 mCi Perkin-Elmer NEG605H001MC
1M Tris-Cl, pH 8.0 Life Technologies/Invitrogen 15568025 Must be adjusted to pH 7.8 with KOH
2M potassium chloride (KCl) Life Technologies/Invitrogen AM9640G Adjust to 1M solution
0.5M EDTA Life Technologies/Invitrogen 15575-020
Nonidet P40 Roche 11333941103
Polyadenylic acid (Poly rA) potassium salt  Midland Reagent Co. P-3001
Oligo d(T) primer  Life Technologies/Invitrogen 18418-012
Dithiothreitol (DTT) Sigma-Aldrich 43815-1G
SR, Super Resolution Phosphor Screen, Small Perkin-Elmer 7001485
Corning Costar Thermowell 96 well plate model (M) Polycarbonate Fisher 07-200-245 Manufactured by Corning Life
Corning 96 Well Microplate Aluminum Sealing Tape, Nonsterile Fisher 07-200-684 Manufactured by Corning Life
DE-81 anion exchange paper Whatman 3658-915
Trisodium citrate dihydrate Sigma-Aldrich S1804-1KG
Sodium Chloride Fisher S671-3
Autoradiography cassette Fisher FB-CA-810
Cyclone storage phoshpor screen Packard

Referências

  1. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M., Oldstone, M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. Journal of virology. 68, 6103-6110 (1994).
  2. Koup, R. A., et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. Journal of virology. 68, 4650-4655 (1994).
  3. Jin, X., et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. The Journal of experimental medicine. 189, 991-998 (1999).
  4. Schmitz, J. E., et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 283, 857-860 (1999).
  5. Brumme, Z. L., et al. Marked epitope- and allele-specific differences in rates of mutation in human immunodeficiency type 1 (HIV-1) Gag, Pol, and Nef cytotoxic T-lymphocyte epitopes in acute/early HIV-1 infection. Journal of virology. 82, 9216-9227 (2008).
  6. Leslie, A. J., et al. HIV evolution: CTL escape mutation and reversion after transmission. Nature medicine. 10, 282-289 (2004).
  7. Phillips, R. E., et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 354, 453-459 (1991).
  8. Price, D. A., et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proceedings of the National Academy of Sciences of the United States of America. 94, 1890-1895 (1997).
  9. Goulder, P. J., et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature. 3, 212-217 (1997).
  10. Tang, J., et al. Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1. Journal of virology. 76, 8276-8284 (2002).
  11. Prentice, H. A., et al. HLA-B*57 versus HLA-B*81 in HIV-1 infection: slow and steady wins the race. Journal of virology. 87, 4043-4051 (2013).
  12. Migueles, S. A., et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proceedings of the National Academy of Sciences of the United States of America. 97, 2709-2714 (2000).
  13. Leslie, A., et al. Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. Journal of virology. 84, 9879-9888 (2010).
  14. Kaslow, R. A., et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature medicine. 2, 405-411 (1996).
  15. Altfeld, M., et al. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS. 17, 2581-2591 (2003).
  16. Kiepiela, P., et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nature medicine. 13, 46-53 (2007).
  17. Mothe, B., et al. Definition of the viral targets of protective HIV-1-specific T cell responses. Journal of translational medicine. 9, 208 (2011).
  18. Peyerl, F. W., Barouch, D. H., Letvin, N. L. Structural constraints on viral escape from HIV- and SIV-specific cytotoxic T-lymphocytes. Viral immunology. 17, 144-151 (2004).
  19. Rolland, M., et al. Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PloS one. 3, e1424 (2008).
  20. Wagner, R., et al. Molecular and functional analysis of a conserved CTL epitope in HIV-1 p24 recognized from a long-term nonprogressor: constraints on immune escape associated with targeting a sequence essential for viral replication. J Immunol. 162, 3727-3734 (1999).
  21. Wang, Y. E., et al. Protective HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associated with viral escape mutations located in highly conserved regions of human immunodeficiency virus type 1. Journal of virology. 83, 1845-1855 (2009).
  22. Chopera, D. R., et al. Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage. PLoS pathogens. 4, e1000033 (2008).
  23. Crawford, H., et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. The Journal of experimental medicine. 206, 909-921 (2009).
  24. Boutwell, C. L., et al. Frequent and variable cytotoxic-T-lymphocyte escape-associated fitness costs in the human immunodeficiency virus type 1 subtype B Gag proteins. Journal of virology. 87, 3952-3965 (2013).
  25. Brockman, M. A., et al. Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. Journal of virology. 81, 12608-12618 (2007).
  26. Crawford, H., et al. Compensatory mutation partially restores fitness and delays reversion of escape mutation within the immunodominant HLA-B*5703-restricted Gag epitope in chronic human immunodeficiency virus type 1 infection. Journal of virology. 81, 8346-8351 (2007).
  27. Martinez-Picado, J., et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. Journal of virology. 80, 3617-3623 (2006).
  28. Schneidewind, A., et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. Journal of virology. 81, 12382-12393 (2007).
  29. Wright, J. K., et al. Impact of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity. Journal of virology. 86, 3193-3199 (2012).
  30. Kawashima, Y., et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature. 458, 641-645 (2009).
  31. Goepfert, P. A., et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. The Journal of experimental medicine. 205, 1009-1017 (2008).
  32. Brockman, M. A., et al. Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. Journal of virology. 84, 11937-11949 (2010).
  33. Huang, K. H., et al. Progression to AIDS in South Africa is associated with both reverting and compensatory viral mutations. PloS one. 6, e19018 (2011).
  34. Wright, J. K., et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters. Journal of virology. 84, 10820-10831 (2010).
  35. Wright, J. K., et al. Influence of Gag-protease-mediated replication capacity on disease progression in individuals recently infected with HIV-1 subtype. C. Journal of virology. 85, 3996-4006 (2011).
  36. Adachi, A., et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of virology. 59, 284-291 (1986).
  37. Brockman, M. A., Tanzi, G. O., Walker, B. D., Allen, T. M. Use of a novel GFP reporter cell line to examine replication capacity of CXCR4- and CCR5-tropic HIV-1 by flow cytometry. Journal of virology. 131, 134-142 (2006).
  38. Ndung’u, T., Renjifo, B., Essex, M. Construction and analysis of an infectious human Immunodeficiency virus type 1 subtype C molecular clone. Journal of virology. 75, 4964-4972 (2001).
  39. Prince, J. L., et al. Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS pathogens. 8, e1003041 (2012).
  40. Ostrowski, M. A., Chun, T. W., Cheseboro, B., Stanley, S. K., Tremblay, M., et al. Detection assays for HIV proteins. Current protocols in immunology / edited by John E. Coligan … [et al.]. 12 (Unit 12 15), .
  41. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 77, 61-68 (1989).
  42. Inoue, H., Nojima, H., Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene. 96, 23-28 (1990).
  43. Bichara, M., Pinet, I., Schumacher, S., Fuchs, R. P. Mechanisms of dinucleotide repeat instability in Escherichia coli. Genética. 154, 533-542 (2000).
  44. Ackerson, B., Rey, O., Canon, J., Krogstad, P. Cells with high cyclophilin A content support replication of human immunodeficiency virus type 1 Gag mutants with decreased ability to incorporate cyclophilin A. Journal of virology. 72, 303-308 (1998).
  45. Dudley, D. M., et al. A novel yeast-based recombination method to clone and propagate diverse HIV-1 isolates. BioTechniques. 46, 458-467 (2009).
  46. Ganser-Pornillos, B. K., von Schwedler, U. K., Stray, K. M., Aiken, C., Sundquist, W. I. Assembly properties of the human immunodeficiency virus type 1 CA protein. Journal of virology. 78, 2545-2552 (2004).
  47. Forshey, B. M., von Schwedler, U., Sundquist, W. I., Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. Journal of virology. 76, 5667-5677 (2002).
  48. Gottlinger, H. G., Dorfman, T., Sodroski, J. G., Haseltine, W. A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proceedings of the National Academy of Sciences of the United States of America. 88, 3195-3199 (1991).
check_url/pt/51506?article_type=t

Play Video

Citar este artigo
Claiborne, D. T., Prince, J. L., Hunter, E. A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses. J. Vis. Exp. (90), e51506, doi:10.3791/51506 (2014).

View Video