In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool.
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool.
This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations.
To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons.
We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 de Aplysia or in other animal systems2,3,13,14.
1. Preparation of Recording Dish
2. Electrode Preparation
3. Hook Electrode Attachment
4. Ganglia and Muscle Preparation
5. Electrically Connecting Hook Electrodes
6. Setting up the Extracellular Glass Electrodes for Soma Recordings
7. Setting up the Suction Electrodes for the Nerve Recordings
8. Setting up the Force Transducer to Measure the I1/I3 Muscle Contraction
9. Identifying Motor Neurons within a Motor Pool
Figures 4 and 5 show typical results used to identify two I1/I3 motor neurons. Figure 4 shows the soma recordings of a large motor neuron, B3, during egestive-like and ingestive-like patterns (Figures 4C, 4D). The one-for-one corresponding spikes on the soma channel and the ipsilateral BN2 channel (Figure 4E) show that the specificity of B3 soma recording was maintained during patterns. B3 fires during the middle-to-late retraction phase of the patterns. From Figure 4 and other results (not shown), we found that the BN2 unit of B3 is always the largest BN2 unit. Thus, it can also be detected directly from BN2 recordings.
Figure 5 shows the soma recordings of a small neuron, B43, during egestive-like and ingestive-like patterns (Figures 5C, 5D). The one-for-one corresponding spikes on the soma channel and the ipsilateral BN2 channel (Figure 5E) also show that the specificity of B43 soma recording was maintained during patterns. Neuron B43 bursts at the end of the retraction phase during patterns. Since the BN2 unit of B43 is small, it would be difficult to identify it from the BN2 recordings without the soma recording; however, because it fires most intensely at the end of the BN2 motor pattern, the end of B43’s burst can still be identified from BN2 recordings alone.
Figure 6 shows an optimized diagnostic tree that does not require muscle innervation as a criterion, which makes it much easier to extracellularly identify the I1/I3 motor neurons in the suspended buccal mass preparation or in vivo. The diagnostic tree was developed, however, by using measures of force and EMG, and thus illustrates how the techniques in this protocol can lead to streamlined motor neuron identification.
Figure 1. Schematic of overall setup and the dish for the force studies. The top image shows a top view. The bottom image shows a side view (corresponding to the dashed line in the middle of the top view). The cerebral ganglion is pinned to Sylgard in the back chamber (area A). The buccal ganglia are pinned to Sylgard on the middle platform (area C). The back chamber and middle platform are separated by an elevated Sylgard wall (area B). The cerebral-buccal connectives (CBCs) pass through a notch in the Sylgard wall, sealed with vacuum grease. The buccal mass is glued to the glass bottom of the front chamber (area D). The buccal nerves 2 (BN2s) are attached to the buccal mass. Two hooks attached to silk sutures are inserted into the anterior and posterior regions of the I1/I3 muscle. The silk sutures are then tied to the force transducer. The figure uses dark gray, light gray, and white to indicate the surfaces of areas A, B, C, and D. The darker the color, the higher the corresponding surface. The figure uses a, b, c, and d to indicate important dimensions of the dish. Length a is 3-4 mm, the width of the notch that connects the back chamber and middle platform. Length b is about 3-5 mm, the height difference between the surfaces of the middle platform (area C) and the Sylgard wall (area B). Length c indicates the length of the notch, which is about 5 mm. Length d shows the width of the middle platform (area C), which is about 5 mm.
Figure 2. Schematic of the buccal ganglia and electrodes setup. The figure shows the locations of key nerves, including buccal nerves 1, 2, and 3 (BN1, BN2, and BN3), the esophageal nerve (EN), the radular nerve (RN), the I2 nerve and muscle, and the cerebral buccal connective (CBC). Note that the BN2s are attached to the buccal mass (see Figure 1). The CBCs are attached to the cerebral ganglion, passing through the notch of the Sylgard wall and are sealed with vacuum grease (see Figure 1). The RN and the I2 nerve and muscle are pulled above the ganglia and pinned proximal to the buccal mass (front direction). Blue lines indicate the location of pins. Two bent pins (red lines labeled 1) are used to anchor the CBCs. Note that a flap of sheath of the CBC on the left side is folded and pinned down between BN2 and BN3 to rotate the left buccal ganglion (red line labeled 2). In some ganglia, it may be more convenient to pin the sheath down between CBC and BN3. An additional pin is added to the side of the ganglion that is proximal to the EN (red line labeled 3) for further rotation and stabilization. The extracellular glass electrode is placed on top of the sheath above the soma for extracellular stimulation and recording. The hook electrodes are attached to the BN3s and the pins holding those nerves in place should be placed more distally than the attachment points of these hook electrodes. Two suction electrodes are attached to the RN and the I2 nerve and muscle (see inset for a clearer view of the I2 nerve and muscle). Click here to view larger figure.
Figure 3. A picture and schematic of the neuron map for extracellular identification of the I1/I3 motor neurons in the Aplysia buccal ganglion. The top picture shows a right side buccal ganglion, pinned caudal side up. To rotate the buccal ganglia, the RN and the I2 nerve/muscle are pulled above the buccal ganglia and pinned proximal to the side of the EN. A flap of the CBC sheath is also folded and pinned for rotation (see Figure 2), so that the neurons at the rostral side or at the caudal/rostral border can be seen. The bottom schematic is drawn based on the top picture. The picture and schematic together indicate the locations of the I1/I3 motor neurons B3, B6, B9, B10, B38, B39, B436,7 and B8222,23, as well as some other neurons. Neurons B8a and B8b are responsible for the largest unit on the RN, and innervate the muscle I4 controlling the grasper6,17. Neurons B4 and B5 are responsible for the largest unit on the BN318. Although the sizes and locations of the I1/I3 motor neurons are variable from animal to animal, the relative sizes and locations are quite reliable for most neurons: B3, B6, B9, B38, B43, and B82. See Discussion for more details about the I1/I3 motor neurons, especially some of the difficulties of uniquely identifying B10 and B39.
Figure 4. Identifying and characterizing the I1/I3 motor neuron B3. A) Extracellular stimulation of B3 (at arrow 1) and recording from the B3 soma (starting at arrow 2) as well as from the corresponding nerves and muscle regions. From top to bottom, the channels are recordings from the B3 soma, the contralateral BN2, the ipsilateral BN2, the ipsilateral BN3, the contraction force of the anterior region of the I1/I3 muscle, and the contraction force of the posterior region of the I1/I3 muscle. The blue box highlights the duration of forces in the anterior and posterior regions of the I1/I3 muscle. In this particular case, the posterior force is greater than the anterior force. B) Expanded view of the area outlined by the red box in A1. The one-for-one corresponding action potentials in the B3soma and the iBN2 channels show that B3 only projects on the ipsilateral BN2. C) Extracellular recording from the B3 soma and nerves in an egestive-like motor pattern. D) Extracellular recording from the B3 soma and nerves in an ingestive-like motor pattern. In C and D, from top to bottom, the channels are recordings from the B3 soma, the I2 nerve, the RN, the ipsilateral BN2, and the ipsilateral BN3. The blue boxes indicate the protraction and retraction phases of the patterns. The red bars in the B3soma channel in both C and D highlight the action potentials recorded from the B3 soma. The red bars in the iBN2 channel in both C and D indicate the corresponding timing when B3 is firing in the ipsilateral BN2 during the feeding motor patterns. E) Expanded view of the B3soma and the iBN2 channels marked by the red bars. The dashed lines show the one-for-one relationship between the action potentials in the B3soma and the iBN2 channels. Note that the BN2 unit of B3 is the largest of all units. Thus, we can also detect the BN2 units of B3 directly from the BN2 recordings without soma recordings. Click here to view larger figure.
Figure 5. Identifying and characterizing the I1/I3 motor neuron, B43. A) Extracellular stimulation of B43 (at arrow 1) and recording from its soma (starting at arrow 2) as well as from the corresponding nerves and muscle regions. From top to bottom, the channels are recordings from the B43soma, the contralateral BN2, the ipsilateral BN2, the ipsilateral BN3, the contraction force of the anterior region of the I1/I3 muscle, and the contraction force of the posterior region of the I1/I3 muscle. The blue box highlights the force measurements of the I1/I3 muscle during B43 activity. Activating B43 generates a small posterior force, but no anterior force. B) Expanded view of the area outlined by the red box in A. The dashed lines show the one-for-one relationship between the action potentials in the B43soma and the iBN2 channels, which indicates that B43 projects on the ipsilateral BN2 only. C) Extracellular recording from the B43 soma and nerves in an egestive-like motor pattern. D) Extracellular recording from the B43 soma and nerves in an ingestive-like motor pattern. In C and D, from top to bottom, the channels are recordings from the B43 soma, the I2 nerve, the RN, the ipsilateral BN2, and the ipsilateral BN3. The blue boxes indicate the protraction and retraction phases of the patterns. The red bars in the B43soma channel in both C and D highlight the action potentials recorded from the B43 soma. The red bars in the iBN2 channel in both C and D indicate the corresponding timing when B43 is firing in the ipsilateral BN2 in these patterns. E) Expanded view of the B43soma and the iBN2 channels marked by the red bar in D. The dashed lines show the one-for-one relationship between the action potentials in the B43soma and the iBN2 channels. Note that the BN2 units of B43 are small and very difficult to detect without soma recordings, but fire consistently at the end of the BN2 motor program, providing another way to identify them. Note also that the larger unit shown in the bottom panel in E is a collision of a B43soma unit with another extracellular unit. Click here to view larger figure.
Figure 6. The optimized diagnostic tree for identifying some of the I1/I3 motor neurons using extracellular soma and nerve recordings. This diagnostic method requires the minimal information for identifying the I1/I3 motor neurons, making it much easier to identify motor neurons in the suspended buccal mass preparation or in vivo. B3 has the largest BN2 unit among the identified I1/I3 motor neurons. In the rest of the motor neurons, B6 and B9 are the only two neurons that project on both BN2 and BN3. B9 is more lateral than B6. The rest of the neurons projecting only on BN2 can also be divided into two groups. One group of neurons projects bilaterally through the BN2s, which includes B10 and B39 and some unknown neurons. The other group of neurons projects ipsilaterally on BN2 only, which includes B38, B43, and B82. B38 is near B3 and B9. B82 is near B8 (see Figure 3). B43 is near B6. Its BN2 unit is small and bursts at the end of feeding patterns.
Figure 7. Comparison of success rates of neuron identification during force experiments using either the extracellular technique or the intracellular technique. With the same force transducer setup, we did 35 experiments using the extracellular technique (small blue dots) and 27 experiments using the conventional intracellular technique (large purple dots) to identify the I1/I3 motor neurons. The x-axis indicates the least number of motor neurons for the I1/I3 muscle that were identified in each type of experiment. The y-axis indicates the percentage success rate of each type of experiment. For example, in 19 out of 35 (54%) of the extracellular experiments, we were able identify at least five different I1/I3 motor neurons. In only 1 out of 27 (4%) of the intracellular experiments, we were able to identify at least five I1/I3 motor neurons. It is clear that the success rate in identifying neurons is much higher for any given number of neurons using the extracellular technique.
In animals with large identified neurons, such as mollusks (for example, Lymnaea, Helix, and Aplysia), analysis of motor pools is typically done using intracellular recording1,2,3,4. In this protocol, we describe a process for uniquely identifying the motor neurons for a motor pool using an extracellular technique. We used the force measurements as an illustration of this process. One could also use EMG to measure muscle innervations. Briefly, to do so, the protocol needs to be altered to attach hook electrodes to different regions of the I1/I3 muscle for EMG recordings.
The extracellular technique has certain advantages over intracellular techniques, some of which have already been described above. First, the extracellular technique requires less time and effort to prepare ganglia for experiments and will cause less damage to neurons. Usually, it will take 20-30 min to prepare the buccal ganglia for extracellular experiments and approximately 1.5 hr to prepare the buccal ganglia that are attached to the buccal mass for intracellular experiments. Since muscles will become less active as the time passes, the time difference between the ganglia preparations for extracellular experiments and intracellular ones might be critical for the success of experiments. Figure 7 shows the comparison of success rates for identifying the motor neurons for the I1/I3 muscle using extracellular or intracellular technique in force studies. In all 35 extracellular force experiments (100%), we were able to identify at least one motor neuron for the I1/I3 muscle. In 31 out of 35 (89%) extracellular experiments, we were able to identify at least three I1/I3 motor neurons. In 19 out of 35 (54%) extracellular experiments, we were able identify at least five different I1/I3 motor neurons. In contrast, the success rates of the intracellular experiments with the same force transducer setup were lower. In 23 out of 27 (85%) intracellular experiments, we were able to identify at least one I1/I3 motor neuron. In 8 out of 27 (30%) intracellular experiments, we were able to identify at least three I1/I3 motor neurons. In only 1 out of 27 (4%) intracellular experiments, we were able to identify five I1/I3 motor neurons. Thus, the likelihood of identifying multiple neurons in the same ganglion is higher using extracellular techniques in contrast to intracellular techniques.
In addition, the extracellular technique can access many neurons on both sides of ganglia during the same experiment. Usually, after desheathing, intracellular electrodes can only access neurons on the side of the ganglion that has been desheathed. For example, when one of the two buccal ganglia (e.g. the hemiganglion on the left side) is pinned caudal side up, it will be easy for intracellular electrodes to access the neurons on that side of the ganglion, e.g. B6, B9, B10, B39, and B43, but difficult to access the neurons on the rostral side of the ganglion, such as B4, B5, B8a, B8b, B38 and B82. In contrast, extracellular electrodes can access many neurons on both sides of the same buccal ganglion with appropriate rotation of the ganglion. The degree of rotation is adjustable and reversible. This also increases the likelihood of identifying multiple neurons in the same ganglion.
Since extracellular electrodes are gently pressed onto the sheath covering the neurons, these electrodes will not be pulled out of neurons, which may create large holes in the membrane and cause damage, as occurs with intracellular electrodes during muscle movements. The signal size will vary as the ganglia move during the muscle movements. Note that sometimes during large muscle movements, the extracellular soma recording signals will be decreased or even lost. However, we can easily move the extracellular electrode back onto the neuron and recover the original signals. This makes it feasible to apply the extracellular technique to the suspended buccal mass preparation8 for behavioral studies, during which muscles generate large contractions as the preparation generates different behavioral responses. For example, in 47 out of 48 suspended buccal mass experiments (98%), we were able to identify at least one motor neuron for the I1/I3 muscle. In 23 out of 48 (48%) suspended buccal mass experiments, we were able to identify at least three I1/I3 motor neurons. In 11 out of 48 (23%) suspended buccal mass experiments, we were able to identify at least five motor neurons for the I1/I3 muscle and record from them during motor patterns as the buccal mass was performing feeding-like behaviors. The extracellular technique is also applicable to other more complicated semi-intact preparations, such as the isolated head feeding preparations that include the tentacles, lips, jaws, buccal mass, buccal ganglia, and cerebral ganglion12,24,25,26. Since the sensory input is very important for eliciting feeding behaviors in such preparations, the extracellular technique will be particularly useful because of its simplicity and less damaging features. Previous studies also show that it is possible to identify and chronically record B4/B5 in vivo18. In these earlier experiments, the investigators used low current (10-20 μA) BN2-a stimulation to selectively activate B4/B5 and glued a short polyethylene tube to the sheath above B4/B5 for recording, into which were inserted a pair of twisted stainless steel wires. Thus, it is also possible to identify and record from motor neurons in vivo using the polyethylene tube electrode that is glued onto the sheath covering the ganglia (Chestek and Chiel, unpublished results).
The extracellular technique also has some limitations. First, it will be difficult for extracellular electrodes to stimulate or record neurons that are too small or too deep within the ganglion. Note that it is still possible to activate neurons that are not at the surface via extracellular stimulation. However, our model5 has showed that the stimulation may lose specificity when the target neuron is deeper than the neighboring neurons. When the neuron is deeper, the electrode-to-soma distance will be greater and higher current will be needed to activate this neuron, which may be high enough to activate other surface neurons nearby. Second, if a neuron is stimulated extracellularly with too much current, it may be damaged and no longer respond; much smaller currents are used in intracellular stimulation, though too much current intracellularly can also damage neurons. Sometimes the soma recording will include multiple units from both the target neuron and adjacent neurons, which is less specific than intracellular recording. In addition, it may be more difficult to precisely control and monitor the firing frequency of an individual neuron using the extracellular rather than the intracellular technique, because the extracellular electrode cannot stimulate and record the same neuron simultaneously. Moreover, the extracellular technique will not be able to record the synaptic input from premotor neurons. In addition, it may be difficult to apply neurotransmitters iontophoretically to a specific neuron unless the ganglion is desheathed, although we have shown that it is possible to stimulate a ganglion using carbachol without removing the sheath27.
The limitations of extracellular identification techniques made some neurons in the motor pool difficult to identify. In this particular example, the extracellular technique reliably identified most of the motor neurons for the I1/I3 muscle in Aplysia: B3, B6, B9, B38, B43, and B82, based on soma size and location, nerve projection, and muscle innervation. However, we have not been able to reliably identify B10 and B39. Previous intracellular work6,7 showed that B10 and B39 are two adjacent neurons on the caudal side of the buccal ganglia, between the B4/B5 region and the B6 region. Both neurons project bilaterally onto the BN2s. B10 innervates the middle and posterior region of the I1/I3 muscle, whereas B39 innervates the anterior region of the I1/I3 muscle. Based on the soma location and nerve projection criteria, we found more than two motor neurons that project bilaterally onto the BN2s in four different experiments. Since their soma locations, muscle innervations, and timing of activity during motor patterns were variable from animal to animal, we were not sure if they were the same neurons. Thus, we were not able to reliably identify B10 and B39 using the extracellular technique because of the lack of consistency. To uniquely identify them, we need to do a more thorough survey of neurons in the buccal ganglia, and may need additional criteria, such as the synaptic input from premotor neurons B4/B5, and the responses to transmitters, which require intracellular techniques.
With appropriate modifications, this technique is also applicable to other motor pools, e.g. the I5 muscle10, the I2 muscle11, and the I4 muscle12 de Aplysia or to other systems, e.g. Lymnaea stagnalis 2, Helix pomatia3, cockroach13, and zebrafish14. For example, if one wants to apply this technique to the motor neurons for the I5 muscle (also known as the accessory radular closer muscle or ARC10,28) in Aplysia, one should keep the BN3s attached to the buccal mass instead of the BN2s, because the I5 motor neurons B15 and B16 project on the ipsilateral BN36,7. Then the buccal mass should be prepared to expose the I5 muscle for EMG or force studies. After the neurons have been reliably identified in the reduced preparation, an optimized diagnostic method could also be created for future behavioral studies.
The technique we have described compares favorably with other extracellular techniques such as multi-electrode arrays and voltage-sensitive dyes. The voltage-sensitive dye29 technique is only used for recording, whereas our extracellular electrodes and multi-electrode arrays30 can be used for both stimulation and recording. Both the multi-electrode array29 and voltage-sensitive dyes30 can record signals from many neurons simultaneously. Although one single extracellular electrode may only record from one or two neurons depending on its tip size and the electrode location, it is certainly possible to position several on a ganglion simultaneously, and we have done this successfully. The standard in vitro multi-electrode array has 8 x 8 or 6 x 10 electrodes29. Since the electrodes are evenly distributed in the array, it is often challenging to determine the identity of the underlying neurons from which recordings are obtained, since the neurons are not evenly distributed, and significant post-processing of the signals, some of which is still manual, must be done to resolve this ambiguity. In contrast, because the extracellular electrodes are positioned over single somata, the identity of the underlying neuron is clear. Thus, it seems that multi-electrode arrays and voltage-sensitive dyes may be more efficient for multiple simultaneous recordings. However, our extracellular electrode technique may provide better selectivity for both stimulation and recording.
The authors have nothing to disclose.
This research was supported by NIH grant NS047073 and NSF grant DMS1010434.
Name | Company | Catalog Number | Comments |
Sodium chloride | Fisher Scientific | S671 | Biological, Certified |
Potassium chloride | Fisher Scientific | P217 | Certified ACS |
Magnesium chloride hexahydrate | Acros Organics | 19753 | 99% |
Magnesium sulfate heptahydrate | Fisher Scientific | M63 | Certified ACS |
Calcium chloride dihydrate | Fisher Scientifc | C79 | Certified ACS |
Glucose (dextrose) | Sigma-Aldrich | G7528 | BioXtra |
MOPS buffer | Acros Organics | 17263 | 99% |
Carbachol | Acros Organics | 10824 | 99% |
Sodium hydroxide | Fisher Scientific | SS255 | Certified |
Hydrochloric acid | Fisher Scientific | SA49 | Certified |
Single-barreled capillary glass | A-M Systems | 6150 | |
Flaming-Brown micropipette puller model P-80/PC | Sutter Instruments | Filament used: FT345B | |
Enamel coated stainless steel wire | California Fine Wire | 0.001D, coating h | |
Household Silicone II Glue | GE | ||
Duro Quick-Gel superglue | Henkel corp. | ||
A-M Systems model 1700 amplifier | A-M Systems | Filter settings: 10-500 Hz for the I2 nerve/muscle; 300-500 Hz for all the other nerves | |
Pulsemaster Multi-Channel Stimulator | World Precision Instruments | A300 | |
Stimulus Isolator | World Precision Instruments | A360 | |
AxoGraph X | AxoGraph Scientific | Software for recordings | |
Gold Connector Pins | Bulgin | SA3148/1 | |
Gold Connector Sockets | Bulgin | SA3149/1 | |
Sylgard 184 Silicone Elastomer | Dow Corning | ||
100 x 15 mm Crystalizing Dish | Pyrex | ||
High Vacuum Grease | Dow Corning | ||
Pipet Tips | Fisher Scientific | 21-375D | |
Minutien Pins | Fine Science Tools | 26002-10 | |
Modeling Clay | Sargent Art | 22-4400 | |
Whisper Air Pump | Tetra | 77849 | |
Aquarium Tubing | Eheim | 7783 | 12/16 mm |
Elite Airstone | Hagen | A962 | |
Vannas Spring Scissors | Fine Science Tools | 15000-08 | |
Dumont #5 Fine Forceps | Fine Science Tools | 11254-20 | |
Kimwipes | Kimberly-Clark | 34155 |