Summary

Multi-unit Metodi di registrazione per caratterizzare l'attività neurale nel Locust (<em> Schistocerca Americana</em>) Circuiti olfattive

Published: January 25, 2013
doi:

Summary

Dimostriamo variazioni del extracellulare più unità tecnica di registrazione per la caratterizzazione degli odori-risposte evocate nelle prime tre fasi del percorso olfattivo invertebrati. Queste tecniche possono essere facilmente adattati per esaminare l'attività ensemble in altri sistemi neuronali pure.

Abstract

Rilevazione e l'interpretazione dei segnali olfattivi sono fondamentali per la sopravvivenza di molti organismi. Sorprendentemente, specie in tutto phyla sono sistemi olfattivi sorprendentemente simili suggerisce che l'approccio biologico chimico rilevamento è stato ottimizzato nel tempo evolutivo 1. Nel sistema olfattivo degli insetti, odoranti sono trasdotte dai neuroni recettori olfattivi (ORN) in antenna, che convertono gli stimoli chimici in treni di potenziali d'azione. Input sensoriali dai ORNs viene quindi trasmessa al lobo antennale (AL, una struttura analoga al bulbo olfattivo vertebrati). Nel AL, rappresentazioni neurali per gli odori assumere la forma di modelli spazio-temporali di cottura distribuiti in gruppi di neuroni principali (PN, noto anche come i neuroni di proiezione) 2,3. L'uscita AL viene successivamente elaborato da cellule Kenyon (KC) nel corpo funghi valle (MB), una struttura associata memoria olfattiva e apprendimento 4,5. Suoe, presentiamo tecniche di registrazione elettrofisiologiche di monitorare odori evocate risposte neurali in questi circuiti olfattivi.

Primo, presentiamo un singolo metodo di registrazione sensillum studiare odori risposte evocate a livello di popolazioni di ORNs 6,7. Si discute l'uso di soluzione salina pipette di vetro riempito affilati come elettrodi per monitorare le risposte ORN extracellulare. Successivamente, presentiamo un metodo per monitorare extracellularmente risposte PN utilizzando un commerciale a 16 canali elettrodo 3. Un approccio simile utilizzando una misura tetrodo filo ritorto a 8 canali è dimostrata per cella Kenyon registrazioni 8. Noi forniamo i dettagli del nostro setup sperimentale e presentano tracce rappresentative di registrazione per ciascuna di queste tecniche.

Protocol

1. Odore di preparazione e consegna Soluzioni diluite odori in olio minerale in volume per ottenere il livello desiderato di concentrazione. Memorizzare una miscela di 20 ml di olio minerale e l'odorizzante in una bottiglia di vetro 60 ml. Inserire due aghi siringa in un tappo di gomma (calibro 19), una dal basso e l'altra dalla parte superiore, per fornire un ingresso e una linea di uscita. Sigillare la bottiglia di vetro con il tappo di gomma e collegare un progettato carbone attivo filtro in aspira…

Representative Results

Risposte evocate odori di un singolo ORN a due differenti alcoli sono mostrati in Figura 3D. A seconda della posizione di registrazione (tipo sensilli, posizionamento dell'elettrodo) più unità registrazioni possono essere raggiunti. Una forma d'onda grezza extracellulare da una registrazione AL è mostrato nella figura 6A. Potenziali di azione o picchi di ampiezze diverse provenienti da diverse PN può essere osservata in questa traccia di tensione…

Discussion

Stimoli sensoriali più evocano risposte combinatorie che sono distribuiti su insiemi di neuroni. Quindi, il controllo simultaneo di multi-neurone attività è necessario comprendere come stimolo informazioni specifiche è rappresentato ed elaborate da circuiti neurali nel cervello. Qui, abbiamo dimostrato extracellulari più unità tecniche di registrazione per la caratterizzazione degli odori-evocate risposte alle prime tre centri di lavorazione lungo il percorso olfattivo degli insetti. Si noti che le tecniche qui pr…

Declarações

The authors have nothing to disclose.

Acknowledgements

Gli autori desiderano ringraziare per finanziare questo lavoro: generoso avvio fondi del Dipartimento di Ingegneria Biomedica in Washington University, un centro per i sistemi di Neuroscienze McDonnell sovvenzione, un Office of Naval Research di assegnazione (Grant N.: N000141210089) a BR

Materials

Name Company Catalog Number Comments
      Electrophysiology Equipment
A.C. amplifier GRASS Model P55 for single sensillum recordings
Audio monitor (model 3300) A-M Systems 940000  
Custom-made 16 channel pre-amplifier and amplifier Cal. Tech. Biology Electronics Shop   for AL and MB recordings
Data acquisition unit National Instruments BNC-2090  
Fiber optic light WPI SI-72-8  
Light source 115 V WPI NOVA  
Manual micromanipulator WPI M3301R for locust brain recordings
Stereomicroscope1 on boom stand Leica M80 for locust brain recordings
Stereomicroscope2 Leica M205C for single sensillum recordings
Vibration-isolation table TMC 63-500 series  
Motorized micromanipulator Sutter Instruments MP285/T  
Oscilloscope Tektronix TD2014B  
      Electrodes/Construction Tools
16-channel electrode NeuroNexus A2x2-tet-3mm-150-121 for antennal lobe recordings
Borosilicate capillary tubes with filament, ID 0.69 mm Sutter Instruments BF120-69-10 for making glass electrodes
Micropipette puller Sutter Instruments P-1000  
Function generator Multimeter Warehouse SG1639A for gold-plating electrodes
Gold plating solution (non cyanide) SIFCO Industries NC SPS 5355  
Impedance tester BAK Electronics Inc. IMP-2 for gold-plating electrodes
Switch rotary Electroswitch C7D0123N for gold-plating electrodes
Pulse isolator WPI A365 for gold-plating electrodes
Q series electrode holder Warner Instruments 64-1091  
Silver wire 0.010″ diameter A-M Systems 782500 ground electrode
8 pin DIP IC socket Digikey ED90032-ND  
Borosilicate capillary tubes with filament, ID 0.58 mm Warner Instruments 64-0787 twisted wire tetrode construction
Heat gun Weller 6966C  
Rediohm-800 wire Kanthal Precision Technologies PF002005  
Titer plate shaker Thermo Scientific 4625Q twisting wires
Carbide scissors, 4.5″ Biomedical Research Instr 25-1000 for cutting twisted tetrode wires
Fine point tweezers HECO 91-EF5-SA for teasing tetrode wires apart
      Odor Delivery
6 ml syringe Kendall 1180600777 for custom designed activated carbon filter
Brown odor bottles Fisher 08-912-165  
Charcoal BuyActivatedCharcoal.com GAC-48C  
Desiccant Drierite 23005  
Drierite gas drying jar Fischer Scientific 09-204  
Heat shrink tubing 3M EPS-200 odor filter preparation
Hypodermic needle aluminum hub, gauge 19 Kendall 8881-200136 for providing inlet and outlet lines for odor bottles
Mineral oil Mallinckrodt Chemicals 6357-04 for odor dilution
Nalgene plastic tubing, 890 FEP Thermo Scientific 8050-0310 for carrier gas delivery
Pneumatic picopump WPI sys-pv820 for odor delivery
Polyethylene tubing ID 0.86 mm Intramedic 427421 for odor bottle outlet connections and saline profusion tubing
Stoppers Lab Pure 97041 for sealing odor bottles
Time tape PDC T-534-RP  
Tubing luer Cole-Parmer 30600-66  
Vacuum tube McMaster-Carr 5488K66  
      Preparation/Dissection
100 x 15 mm petri dish VWR International 89000-304  
18 AWG copper stranded wire Lapp Kabel 4510013 wire insulation is used as rubber gaskets
22 AWG stranded hookup wire AlphaWire 1551 brain platform
Batik wax Jacquard 7946000  
Dental periphery Wax Henry-Schein Dental 6652151  
Electrowaxer Almore International 66000  
Epoxy, 5 min Permatex 84101  
Hypodermic needle aluminum hub Kendall 8881-200136  
Protease from Streptomyces griseus Sigma-Aldrich P5147 for desheathing locust brain
Suture thread non-sterile Fisher NC9087024 for tying the abdomen after gut removal
Vetbond 3M 1469SB for sealing amputation sites
Dumont #1 forceps (coarse) WPI 500335  
Dumont #5 titanium forceps (fine) WPI 14096  
Dumont #5SF forceps (super-fine) WPI 500085 desheathing locust brain
10 cm dissecting scissors WPI 14393 for removing legs and wings
Vannas scissors (fine) WPI 500086 for removing cuticle, cutting the foregut
      Saline Profusion
Extension set with rate flow regulator Moore Medical 69136 for regulating saline flow
IV administration set with Y injection site Moore Medical 73190 for regulating saline flow

Referências

  1. Ache, B. W., Young, J. M. Olfaction: diverse species, conserved principles. Neuron. 48, 417-430 (2005).
  2. Laurent, G., Wehr, M., Davidowitz, H. Temporal representations of odors in an olfactory network. Journal of Neuroscience. 16, 3837-3847 (1996).
  3. Stopfer, M., Jayaraman, V., Laurent, G. Odor identity vs. intensity coding in an olfactory system. Neuron. 39, 991-1004 (2003).
  4. Steven de Belle, J., Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263, 692-695 (1994).
  5. Cassenaer, S., Laurent, G. Conditional modulation of spike-timing-dependent plasticity for olfactory learning. Nature. 482, 47-52 (2012).
  6. Hallem, E. A., Carlson, J. R. Coding of odors by a receptor repertoire. Cell. 125, 143-160 (2006).
  7. Raman, B., Joseph, J., Tang, J., Stopfer, M. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. Journal of Neuroscience. 30, 1994-2006 (2010).
  8. Perez-Orive, J., et al. Oscillations and sparsening of odor representations in the mushroom body. Science. 297, 359-365 (2002).
  9. Naraghi, M., Laurent, G. Odorant-induced oscillations in the mushroom bodies of the locust. The Journal of Neuroscience. 14, 2993-3004 (1994).
  10. Ochieng, S. A., Hallberg, E., Hansson, B. S. Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell and Tissue Research. 291, 525-536 (1998).
  11. Burrows, M., Laurent, G. Synaptic Potentials in the Central Terminals of Locust Proprioceptive Afferents Generated by Other Afferents from the Same Sense Organ. Journal of Neuroscience. 13, 808-819 (1993).
  12. Pouzat, C., Mazor, O., Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. Journal of Neuroscience Methods. 122, 43-57 (2002).
  13. Mazor, O., Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron. 48, 661-673 (2005).
  14. Christensen, T. A., Pawlowski, V. A., Lei, H., Hildebrand, J. G. Multi-unit recordings reveal context dependent modulation of synchrony in odor-specific neural ensembles. Nature Neuroscience. 3, 927-931 (2000).
  15. Pellegrino, M., Nakagawa, T., Vosshall, L. B. Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae. J. Vis. Exp. (36), e1725 (2010).
  16. Geffen, M. N., Broome, B. M., Laurent, G., Meister, M. Neural Encoding of Rapidly Fluctuating Odors. Neuron. 61, 570-586 (2009).
  17. Ito, I., Ong, R. C., Raman, B., Stopfer, M. Sparse odor representation and olfactory learning. Nature Neuroscience. 11, 1177-1184 (2008).
  18. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Review Neuroscience. 3, 884-895 (2002).
  19. Brown, S. L., Joseph, J., Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nature Neuroscience. 8, 1568-1576 (2005).
  20. MacLeod, K., Laurent, G. Distinct mechanism for synchronization and temporal patterning of odor-encoding neural assemblies. Science. 274, 976-979 (1996).
  21. Wehr, M., Laurent, G. Relationship between afferent and central temporal patterns in the locust olfactory system. The Journal of Neuroscience. 19, 381-390 (1999).
  22. Moreaux, L., Laurent, G. Estimating firing rates from calcium signals in locust projection neurons in vivo. Frontiers in Neural Circuits. 1, 1-13 (2007).
  23. Galizia, C. G., Joerges, J., Kuttner, A., Faber, T., Menzel, R. A semi-in-vivo preparation for optical recording of the insect brain. Journal of Neuroscience Methods. 76, 61-69 (1997).
  24. Galan, R. F., Sachse, S., Galizia, C. G., Hez, A. V. M. Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Computation. 16, 999-1012 (2004).
  25. Kuebler, L. S., Schubert, M., Karpati, Z., Hansson, B. S., Olsson, S. B. Antennal Lobe Processing Correlates to Moth Olfactory Behavior. Journal of Neuroscience. 32, 5772-5782 (2012).
  26. Silbering, A. F., Bell, R., Galizia, C. G., Benton, R. Calcium Imaging of Odor-evoked Responses in the Drosophila Antennal Lobe. J. Vis. Exp. (61), e2976 (2012).
  27. Skiri, H. T., Galizia, C. G., Mustaparta, H. Representation of Primary Plant Odorants in the Antennal Lobe of the Moth Heliothis virescens Using Calcium Imaging. Chemical Senses. 29, 253-267 (2004).

Play Video

Citar este artigo
Saha, D., Leong, K., Katta, N., Raman, B. Multi-unit Recording Methods to Characterize Neural Activity in the Locust (Schistocerca Americana) Olfactory Circuits. J. Vis. Exp. (71), e50139, doi:10.3791/50139 (2013).

View Video