Summary

多单位记录方法来描述蝗虫的神经活动(<em> Schistocerca美洲</em>)嗅觉电路

Published: January 25, 2013
doi:

Summary

我们证明细胞外的多单元的记录技术中的前三个阶段的无脊椎动物的嗅觉路径表征气味诱发反应的变化。这些技术可以很容易地适应以及其他神经系统检查合奏活动。

Abstract

嗅觉检测和解释的许多生物的生存是至关重要的。值得注意的是,跨门类的物种都有着惊人的相似嗅觉系统在进化的时间1,化学传感,生物方法进行了优化。在昆虫的嗅觉系统,增味剂,转嗅觉受体神经元(ORN)的天线,这将化学刺激的动作电位的列车。从ORNs的感官输入,然后转发至触角叶(AL;类似于脊椎动物的嗅球结构)。在AL,神经表征气味采取的形式分布在歌舞团的主要神经元(PNS,也被称为投射神经元)2,3的时空放电模式。随后处理的AL输出由肯扬细胞(角质形成)在下游蘑菇体(MB),相关联的结构与嗅觉记忆和学习4,5。她的E,我们提出了电生理记录技术,在这些嗅觉电路的监控气味诱发的神经反应。

首先,我们提出一个单一的感受器记录的方法来研究人口的ORNs 6,7气味诱发反应。我们讨论使用生理盐水填充尖锐的玻璃吸管作为电极细胞外监控ORN反应。接下来,我们提出了一种方法来使用商业16通道的电极细胞外PN反应。类似的方法使用一个定制的8路双绞线四极管展示了肯扬细胞记录8。我们提供详细的实验装置,目前这些技术代表记录的痕迹。

Protocol

1。气味准备工作和实施稀释在矿物油中的气味的解决方案(体积),以达到所需的浓度水平。存储一个20毫升的混合物,矿物油和的加臭剂,在60毫升的玻璃瓶。成的橡胶止动件(表19),一个从底部和其他从顶部插入两个注射器针头,以提供一个入口和一个出口管线。该橡胶塞密封的玻璃瓶中,并附加一个自定义设计的活性炭过滤器的入口线( 图1A)。 的碳过滤器是?…

Representative Results

在图3D中示出一个单一的ORN两种不同醇的气味诱发反应。根据记录位置(放置的电极)的多单元录音感器类型,可以实现的。 图6A中所示的原料外从AL记录波形。可以观察到的动作电位或尖峰的幅度变化,来自不同的PN,在此电压跟踪。虽然蝗虫触角叶投射神经元有兴奋和抑制神经元,唯一的PN生成钠尖峰,可以检测到细胞外3。这一观察表明?…

Discussion

大多数感官刺激,唤起组合分布在歌舞团的神经元的反应。因此,同时监控多神经元活动是有必要了解如何刺激特定的信息在大脑中的神经回路表示和处理。在这里,我们已经证明细胞外多单位记录技术的气味诱发反应的特点前三加工中心以及昆虫嗅觉通路。我们注意到,这里所介绍的技术已嗅觉编码的以前的研究中使用的一些,并成为一个标准的实践在此字段中3,6,13-17。相结合的技术?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者想感谢以下为这项工作提供资金:大方的启动资金从生物医学工程系,美国华盛顿大学,麦中心系统神经科学经费,办公室美国海军研究资助(批准编号:N000141210089)到BR

Materials

Name Company Catalog Number Comments
      Electrophysiology Equipment
A.C. amplifier GRASS Model P55 for single sensillum recordings
Audio monitor (model 3300) A-M Systems 940000  
Custom-made 16 channel pre-amplifier and amplifier Cal. Tech. Biology Electronics Shop   for AL and MB recordings
Data acquisition unit National Instruments BNC-2090  
Fiber optic light WPI SI-72-8  
Light source 115 V WPI NOVA  
Manual micromanipulator WPI M3301R for locust brain recordings
Stereomicroscope1 on boom stand Leica M80 for locust brain recordings
Stereomicroscope2 Leica M205C for single sensillum recordings
Vibration-isolation table TMC 63-500 series  
Motorized micromanipulator Sutter Instruments MP285/T  
Oscilloscope Tektronix TD2014B  
      Electrodes/Construction Tools
16-channel electrode NeuroNexus A2x2-tet-3mm-150-121 for antennal lobe recordings
Borosilicate capillary tubes with filament, ID 0.69 mm Sutter Instruments BF120-69-10 for making glass electrodes
Micropipette puller Sutter Instruments P-1000  
Function generator Multimeter Warehouse SG1639A for gold-plating electrodes
Gold plating solution (non cyanide) SIFCO Industries NC SPS 5355  
Impedance tester BAK Electronics Inc. IMP-2 for gold-plating electrodes
Switch rotary Electroswitch C7D0123N for gold-plating electrodes
Pulse isolator WPI A365 for gold-plating electrodes
Q series electrode holder Warner Instruments 64-1091  
Silver wire 0.010″ diameter A-M Systems 782500 ground electrode
8 pin DIP IC socket Digikey ED90032-ND  
Borosilicate capillary tubes with filament, ID 0.58 mm Warner Instruments 64-0787 twisted wire tetrode construction
Heat gun Weller 6966C  
Rediohm-800 wire Kanthal Precision Technologies PF002005  
Titer plate shaker Thermo Scientific 4625Q twisting wires
Carbide scissors, 4.5″ Biomedical Research Instr 25-1000 for cutting twisted tetrode wires
Fine point tweezers HECO 91-EF5-SA for teasing tetrode wires apart
      Odor Delivery
6 ml syringe Kendall 1180600777 for custom designed activated carbon filter
Brown odor bottles Fisher 08-912-165  
Charcoal BuyActivatedCharcoal.com GAC-48C  
Desiccant Drierite 23005  
Drierite gas drying jar Fischer Scientific 09-204  
Heat shrink tubing 3M EPS-200 odor filter preparation
Hypodermic needle aluminum hub, gauge 19 Kendall 8881-200136 for providing inlet and outlet lines for odor bottles
Mineral oil Mallinckrodt Chemicals 6357-04 for odor dilution
Nalgene plastic tubing, 890 FEP Thermo Scientific 8050-0310 for carrier gas delivery
Pneumatic picopump WPI sys-pv820 for odor delivery
Polyethylene tubing ID 0.86 mm Intramedic 427421 for odor bottle outlet connections and saline profusion tubing
Stoppers Lab Pure 97041 for sealing odor bottles
Time tape PDC T-534-RP  
Tubing luer Cole-Parmer 30600-66  
Vacuum tube McMaster-Carr 5488K66  
      Preparation/Dissection
100 x 15 mm petri dish VWR International 89000-304  
18 AWG copper stranded wire Lapp Kabel 4510013 wire insulation is used as rubber gaskets
22 AWG stranded hookup wire AlphaWire 1551 brain platform
Batik wax Jacquard 7946000  
Dental periphery Wax Henry-Schein Dental 6652151  
Electrowaxer Almore International 66000  
Epoxy, 5 min Permatex 84101  
Hypodermic needle aluminum hub Kendall 8881-200136  
Protease from Streptomyces griseus Sigma-Aldrich P5147 for desheathing locust brain
Suture thread non-sterile Fisher NC9087024 for tying the abdomen after gut removal
Vetbond 3M 1469SB for sealing amputation sites
Dumont #1 forceps (coarse) WPI 500335  
Dumont #5 titanium forceps (fine) WPI 14096  
Dumont #5SF forceps (super-fine) WPI 500085 desheathing locust brain
10 cm dissecting scissors WPI 14393 for removing legs and wings
Vannas scissors (fine) WPI 500086 for removing cuticle, cutting the foregut
      Saline Profusion
Extension set with rate flow regulator Moore Medical 69136 for regulating saline flow
IV administration set with Y injection site Moore Medical 73190 for regulating saline flow

Referências

  1. Ache, B. W., Young, J. M. Olfaction: diverse species, conserved principles. Neuron. 48, 417-430 (2005).
  2. Laurent, G., Wehr, M., Davidowitz, H. Temporal representations of odors in an olfactory network. Journal of Neuroscience. 16, 3837-3847 (1996).
  3. Stopfer, M., Jayaraman, V., Laurent, G. Odor identity vs. intensity coding in an olfactory system. Neuron. 39, 991-1004 (2003).
  4. Steven de Belle, J., Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263, 692-695 (1994).
  5. Cassenaer, S., Laurent, G. Conditional modulation of spike-timing-dependent plasticity for olfactory learning. Nature. 482, 47-52 (2012).
  6. Hallem, E. A., Carlson, J. R. Coding of odors by a receptor repertoire. Cell. 125, 143-160 (2006).
  7. Raman, B., Joseph, J., Tang, J., Stopfer, M. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. Journal of Neuroscience. 30, 1994-2006 (2010).
  8. Perez-Orive, J., et al. Oscillations and sparsening of odor representations in the mushroom body. Science. 297, 359-365 (2002).
  9. Naraghi, M., Laurent, G. Odorant-induced oscillations in the mushroom bodies of the locust. The Journal of Neuroscience. 14, 2993-3004 (1994).
  10. Ochieng, S. A., Hallberg, E., Hansson, B. S. Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell and Tissue Research. 291, 525-536 (1998).
  11. Burrows, M., Laurent, G. Synaptic Potentials in the Central Terminals of Locust Proprioceptive Afferents Generated by Other Afferents from the Same Sense Organ. Journal of Neuroscience. 13, 808-819 (1993).
  12. Pouzat, C., Mazor, O., Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. Journal of Neuroscience Methods. 122, 43-57 (2002).
  13. Mazor, O., Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron. 48, 661-673 (2005).
  14. Christensen, T. A., Pawlowski, V. A., Lei, H., Hildebrand, J. G. Multi-unit recordings reveal context dependent modulation of synchrony in odor-specific neural ensembles. Nature Neuroscience. 3, 927-931 (2000).
  15. Pellegrino, M., Nakagawa, T., Vosshall, L. B. Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae. J. Vis. Exp. (36), e1725 (2010).
  16. Geffen, M. N., Broome, B. M., Laurent, G., Meister, M. Neural Encoding of Rapidly Fluctuating Odors. Neuron. 61, 570-586 (2009).
  17. Ito, I., Ong, R. C., Raman, B., Stopfer, M. Sparse odor representation and olfactory learning. Nature Neuroscience. 11, 1177-1184 (2008).
  18. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Review Neuroscience. 3, 884-895 (2002).
  19. Brown, S. L., Joseph, J., Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nature Neuroscience. 8, 1568-1576 (2005).
  20. MacLeod, K., Laurent, G. Distinct mechanism for synchronization and temporal patterning of odor-encoding neural assemblies. Science. 274, 976-979 (1996).
  21. Wehr, M., Laurent, G. Relationship between afferent and central temporal patterns in the locust olfactory system. The Journal of Neuroscience. 19, 381-390 (1999).
  22. Moreaux, L., Laurent, G. Estimating firing rates from calcium signals in locust projection neurons in vivo. Frontiers in Neural Circuits. 1, 1-13 (2007).
  23. Galizia, C. G., Joerges, J., Kuttner, A., Faber, T., Menzel, R. A semi-in-vivo preparation for optical recording of the insect brain. Journal of Neuroscience Methods. 76, 61-69 (1997).
  24. Galan, R. F., Sachse, S., Galizia, C. G., Hez, A. V. M. Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Computation. 16, 999-1012 (2004).
  25. Kuebler, L. S., Schubert, M., Karpati, Z., Hansson, B. S., Olsson, S. B. Antennal Lobe Processing Correlates to Moth Olfactory Behavior. Journal of Neuroscience. 32, 5772-5782 (2012).
  26. Silbering, A. F., Bell, R., Galizia, C. G., Benton, R. Calcium Imaging of Odor-evoked Responses in the Drosophila Antennal Lobe. J. Vis. Exp. (61), e2976 (2012).
  27. Skiri, H. T., Galizia, C. G., Mustaparta, H. Representation of Primary Plant Odorants in the Antennal Lobe of the Moth Heliothis virescens Using Calcium Imaging. Chemical Senses. 29, 253-267 (2004).
check_url/pt/50139?article_type=t

Play Video

Citar este artigo
Saha, D., Leong, K., Katta, N., Raman, B. Multi-unit Recording Methods to Characterize Neural Activity in the Locust (Schistocerca Americana) Olfactory Circuits. J. Vis. Exp. (71), e50139, doi:10.3791/50139 (2013).

View Video