Deficits in fine motor coordination can be assessed with the balance beam test. Performance on the beam is quantified by the speed at which the beam is traversed and the number of times the mouse slips on the beam.
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.
1. This Protocol is Based on Those of Southwell et. al. (2009) and Carter et. al. (2001).
2. Representative Results:
Figure 1. Typical cross times of male and female C57Bl6 on 6mm and 12mm beams. A cohort of 9 to 11 week old C57BL/6-NCRL WT mice were tested on both beams after 2 days of training. Average times for crossing the 12 mm beam were 4.6 ± 0.4 sec for males (n=14) and 3.3 ± 0.3 sec for females (n=11). Times on the 6 mm beam were 6.8 ± 0.7 sec for males (n=13) and 5.9 ± 0.5 sec for females (n=10) (errors are reported as S.E.M.).
Performance on the balance beam is a useful measure of fine coordination and balance and has been validated by previous work. The beam test can detect motor deficits due to age, central nervous syst` lesions, and genetic and pharmacological manipulations in young and older rodents2,3,4. Mice with cortical impact lesions often exhibit contralateral slipping on the beam5,6. The beam test has also been used to differentiate the motor skills of wild-type (WT) and Huntington disease (HD) mouse models over time and to assess improvements in HD mice with treatment7,8. Another genetic mouse model where motor deficits have been detected on the balance beam include a mouse model of Sandhoff disease, a lysosomal storage disorder9. In detecting motor coordination deficits induced by benzodiazepines, the beam test was more sensitive than the Rotarod. Stanley (2005) showed that only a 30% GABA(A) receptor occupancy by diazepam or lorazepam was needed in order to observe motor deficits on the beam compared to over 70% receptor occupancy for deficits on the Rotarod10. Beams of narrower widths can be used to detect even more subtle differences.
In this study, we tested a cohort of 9 to 11 week old C57BL/6-NCRL WT mice on the 12 mm and 6 mm beams. Average times for crossing the 12 mm beam were 4.6 ± 0.4 sec for males (n=14) and 3.3 ± 0.3 sec for females (n=11). Times on the 6 mm beam were 6.8 ± 0.7 sec for males (n=13) and 5.9 ± 0.5 sec for females (n=10) (errorsare reported as S.E.M.). There were few slips and no falls by these mice on these beams. In genetically or pharmacologically manipulated animals, the slips and falls may become more frequent and can be quantified. Impaired mice may cling onto the side of the beam, which increases their time to cross. The level of activity may differ depending on the age and strain of the mice. C57BL/6 mice are typically active animals6.
Modifications of this test that may encourage the mice to move forward include using an inclined beam rather than a horizontal one2,4. The mice can also be placed in the safe platform for a few seconds to increase willingness to reach the goal2. Confounding factors for assessment of motor coordination using the balance beam include motivation, and mice that are overtrained may become bored and uncooperative. If motor deficits are found, other tests including footprint analysis of locomotor gait, mesh climbing, swimming, pole climbing, and the staircase test can be used to further assess the deficits2,4.
The authors have nothing to disclose.
Amber Southwell set up the apparatus and trained the authors in its use. Funding was provided by a grant from the NINDS to Paul Patterson.