We have developed a simple and reproducible protocol to access stomatal response to live bacteria. This method minimizes wounding and manipulation of the leaf as compared to the use of epidermal peels reported previously.
Stomata are natural openings in the plant epidermis responsible for gas exchange between plant interior and environment. They are formed by a pair of guard cells, which are able to close the stomatal pore in response to a number of external factors including light intensity, carbon dioxide concentration, and relative humidity (RH). The stomatal pore is also the main route for pathogen entry into leaves, a crucial step for disease development. Recent studies have unveiled that closure of the pore is effective in minimizing bacterial disease development in Arabidopsis plants; an integral part of plant innate immunity. Previously, we have used epidermal peels to assess stomatal response to live bacteria (Melotto et al. 2006); however maintaining favorable environmental conditions for both plant epidermal peels and bacterial cells has been challenging. Leaf epidermis can be kept alive and healthy with MES buffer (10 mM KCl, 25 mM MES-KOH, pH 6.15) for electrophysiological experiments of guard cells. However, this buffer is not appropriate for obtaining bacterial suspension. On the other hand, bacterial cells can be kept alive in water which is not proper to maintain epidermal peels for long period of times. When an epidermal peel floats on water, the cells in the peel that are exposed to air dry within 4 hours limiting the timing to conduct the experiment. An ideal method for assessing the effect of a particular stimulus on guard cells should present minimal interference to stomatal physiology and to the natural environment of the plant as much as possible. We, therefore, developed a new method to assess stomatal response to live bacteria in which leaf wounding and manipulation is greatly minimized aiming to provide an easily reproducible and reliable stomatal assay. The protocol is based on staining of intact leaf with propidium iodide (PI), incubation of staining leaf with bacterial suspension, and observation of leaves under laser scanning confocal microscope. Finally, this method allows for the observation of the same live leaf sample over extended periods of time using conditions that closely mimic the natural conditions under which plants are attacked by pathogens.
1. Growing Plants and Preparing Bacteria
2. Leaf Staining and Incubation with Bacteria
3. Microscopy, Measurement and Data Analysis
4. Representative Images of Stomatal Response to Incubation with Bacteria
Figure 1. Micrograph of the surface of an Arabidopsis leaf. One field of view of the leaf surface under laser scanning confocal microscope (LSCM) using the 20x objective. Note that stomatal aperture is not as evident when compared to the fluorescent view aided by propidium iodide staining (Figure 2).
Figure 2. Micrograph of the surface of a propidium iodide-stained Arabidopsis leaf. One field of view of the leaf surface under laser scanning confocal microscope (LSCM) using the 20x objective. Note a range of stomatal pore opening. Yellow arrows are pointed to completely close stomata and green arrows are pointed to wide open stomata.
Figure 3. Completely close stomata identified by the shape of and the opening between the guard cells. The aperture width is considered to be 0 μm.
Figure 4. Open stomata showing the aperture width in μm. Measurements were taken by using the LSCM browser based on a straight line drawn across the widest area of the stomatal pore.
Figure 5. Stomatal aperture of Arabidopsis leaves incubated with three strains of Pseudomonas syringae pv. tomato: DC3118, DB29, and DC3000. Plants were kept in the dark during the experimentation time. Results are shown as the mean (n=50-70) ± standard error. Statistical significance was detected with two-tailed Student’s t-test. The experiment was repeated three times with similar results.
We have presented a straight forward procedure to measure stomatal aperture in intact leaf tissue allowing for an easy assessment of stomatal response to different treatments.
Although we have presented results using the model system Arabidopsis/Pseudomonas syringae, the intact leaf stomatal assay can be potentially performed with any plant-bacterium combination. The protocol can easily be modified to fit growth requirements of other plants and bacterial pathogens. The overall principle and procedure remain the same. In addition, this method may be beneficial to researchers who wish to study functional output of guard cells not only to live microbes, but also to other stimuli and chemical agents under conditions that maintain the leaf’s natural environment.
Whole leaf can be difficult to image due to its thickness and uneven topography. This problem can be alleviated by removing the mid vein of the leaf so it lays flat on the slide and using confocal microscopy. However, other types of fluorescence microscope can be used to obtain high resolution images of the leaf surface.
The authors have nothing to disclose.
This research was supported by a grant from the National Institute of Health and The University of Texas at Arlington set up funds to MM.
Material Name | Tipo | Company | Catalogue Number | Comment |
---|---|---|---|---|
Propidium iodide | Sigma Aldrich | P4864 | ||
Tryptone | Fisher Scientific | BP1421-1 | ||
Yeast Extract | Difco | 0127-01-7 | ||
Sodium Chloride | VWR | 7647-14-5 | ||
Agar | Bio Express | J637-2500G | ||
Plant growth chamber | ||||
Shaker incubator | ||||
Laser scanning confocal microscope |