Source: Eidhof, I., et al. High-throughput Analysis of Locomotor Behavior in the Drosophila Island Assay. J. Vis. Exp. (2017).
This video describes the island assay, a behavioral method used to study Drosophila locomotion. The sample protocol features a setup for the assay compatible with semi-automated image analysis.
This protocol is an excerpt from Eidhof et al., High-throughput Analysis of Locomotor Behavior in the Drosophila Island Assay, J. Vis. Exp. (2017).
1. Construction of the Island Assay Box
2. Software Requirements and Installation
3. Preparation of the Flies to Be Tested in the Island Assay
4. Experimental Setup
NOTE: See Figure 1B.
5. Video Settings Setup in the "Capture Device" Section of the Interface
6. Recording and Video Saving Settings Setup in the "Time-lapse" Section of the Interface
7. Island Assay and Data Collection
Figure 1: Flowchart outlining the requirements, experimental procedure, and analysis of the island assay. (A) Island assay equipment. (B) Experimental setup for the island assay. (C) Island assay. (D) Processing of island assay data with the "Drosophila Island Assay" macro. The "Drosophila Island Assay" macro is composed of 3 sub-macros: 1) make stack and projection, 2) define platform, and 3) analysis. (E) Processing and statistical evaluation of data using the "Island Assay Analysis" script. Please click here to view a larger version of this figure.
Figure 2: Examples of different adjustments required during the protocol. (A) The required directory structure in which island assay experiments must be stored for data processing and analysis. (B) When adjusting the video settings, flies must appear black on a white background. (C) Image frame output files as saved by the image-recording software described in this manuscript. (D) The yellow outline shows the platform selection. The stored platform selection in the "ROI Manager" is highlighted in blue. (E) Flies are represented as white dots during the adjustment of the "Minimum fly size setting." The results window shows the area of the flies in pixels. (F) Example of a single recorded image frame (on the left) and the corresponding frame in the resulting image stack, obtained with the "Drosophila Island Assay" macro (on the right). Please click here to view a larger version of this figure.
25 x 95 mm Drosophila vials | Flystuff | 32-116SB | – |
Logitech C525 HD Webcam | Logitech | – | Any webcam with USB connection is suitable. |
Stand to hold webcam | – | – | – |
Lamp | – | – | 12 V LED lights are appropriate |
Pounding pad | – | – | Any mouse pad works |
Island Assay box | – | – | Dimensions 40x35x2.5 cm. Hole 20×30 cm. Transparent. |
Island Assay bath | – | – | Dimensions 42x38x25 cm. Non white. |
Island/platform | – | – | Dimensions 42x38x25 cm. Uniform white. |
Soap | – | – | Standard dishwashing detergent is suitable. |
Computer | – | – | Scripts run both on Windows and Mac |
Image-recording software: HandiAvi® | AZcendant® | – | HandyAvi is only compatible with Windows and has been described throughout the manuscript. It can be downloaded from: http://www.azcendant.com/DownloadHandyAvi.html (version 5.0) |
Image-recording software: WebcamCapture | – | – | Fiji/ImageJ plugin that can be used on Mac alternative to HandyAvi for image-recordings and can be downloaded from: https://imagej.nih.gov/ij/plugins/webcam-capture/ When using this method, the user has to use the same folder setup and image-recording settings indicated in this manuscript, with the exception that for each experimental replicate, the captured image stack should be exported as Stack.tiff to the corresponding experimental replicate folder. Upon running the "Drosophila Island Assay" macro on this data, no text should be present in the "First frame identifier" setting. |