Back to chapter

14.4:

Estrutura do RNA

JoVE Core
Biologia
É necessária uma assinatura da JoVE para visualizar este conteúdo.  Faça login ou comece sua avaliação gratuita.
JoVE Core Biologia
RNA Structure

Idiomas

COMPARTILHAR

Cada molécula de ácido ribonucleico ou RNA é composta por uma cadeia de Nucleotídeos. Cada Nucleotídeo consiste em ribose, um açúcar de cinco carbonos, ligado a um grupo fosfato em um lado E uma das quatro bases nitrogenadas sobre a outra, Adenina, Guanina, Citosina ou Uracil. Essas bases se ligam a suas bases complementares no DNA durante a transcrição.Quando o RNA mensageiro, o mRna é sintetizado. A adenina se liga à Timina, a Guanina se liga à Citosina e o Uracil que é usado em RNA em vez de Timina liga-se à Adenina. Os Nucleotídeos são então ligados entre si através de ligações Fosfodiéster entre o grupo Fosfato de um Nucleotídeo e um grupo Hidroxila OH na ribose do Nucleotídeo adjacente, criando uma estrutura de açúcar-fosfato.As moléculas de RNA têm uma extremidade principal de cinco, com um grupo Fosfato nos cinco carbonos primários de ribose e uma extremidade de três principais. Com um grupo hidroxila ligado a três carbonos primários. O RNA é montado em cinco primes para a direção três prime e geralmente permanece em cadeia simples.

14.4:

Estrutura do RNA

Visão Geral

A estrutura básica do RNA consiste em um açúcar de cinco carbonos e uma de quatro bases de nitrogénio. Embora a maior parte do RNA seja de cadeia simples, ele pode formar estruturas secundárias e terciárias complexas. Tais estruturas desempenham papéis essenciais na regulação da transcrição e da tradução.

Diferentes Tipos de RNA Têm a Mesma Estrutura Básica

Existem três tipos principais de ácido ribonucleico (RNA): RNA mensageiro (mRNA), RNA de transferência (tRNA) e RNA ribossómico (rRNA). Todos os três tipos de RNA consistem em uma cadeia de nucleótidos de cadeia simples. Cada nucleótido é composto por um esqueleto de açúcar de cinco carbonos. As moléculas de carbono de ribose são numeradas de um a cinco. O carbono número cinco carrega um grupo fosfato e o carbono número um uma base de nitrogénio.

Existem quatro bases de nitrogénio no RNA—adenina (A), guanina (G), citosina (C) e uracilo (U). O uracilo é a única base do RNA que não está presente no DNA, que usa timina (T) em vez disso. Durante a transcrição, o RNA é sintetizado a partir de um molde de DNA com base na ligação complementar das novas bases de RNA às bases de DNA; A liga-se a T, G liga-se a C, C liga-se a G, e U liga-se a A.

A Montagem do RNA é Unidirecional

Como no DNA, nucleótidos adjacentes no RNA estão ligados através de ligações fosfodiéster. Estas ligações formam-se entre o grupo fosfato de um nucleótido e o grupo hidroxilo (–OH) na ribose do nucleótido adjacente.

Essa estrutura dá ao RNA a sua direcionalidade—ou seja, as duas extremidades da cadeia de nucleótidos são diferentes. O carbono número cinco da ribose carrega um grupo fosfato não ligado que dá origem ao nome terminal 5’ (ler como cinco prime). A última ribose na outra extremidade da cadeia de nucleótidos tem um grupo de hidroxilo livre (–OH) no carbono número 3; portanto, esta extremidade da molécula de RNA é chamada de terminal 3’. À medida que os nucleótidos são adicionados à cadeia durante a transcrição, o grupo fosfato de 5’ do novo nucleótido reage com o grupo hidroxilo de 3’ da cadeia em crescimento. Portanto, o RNA é sempre montado na direção de 5’ para 3’.

O RNA Pode Formar Estruturas Secundárias

As estruturas secundárias são formadas através da combinação de bases complementares entre nucleótidos distantes no mesmo RNA de cadeia simples. Hairpin loops são formados por emparelhamento complementar de bases entre 5-10 nucleótidos uns dos outros. Stem-loops são formados por emparelhamento de bases que estão separadas por 50 a centenas de nucleótidos. Em procariotas, essas estruturas secundárias funcionam como reguladores transcricionais. Por exemplo, um hairpin loop pode servir como um sinal de terminação de forma a que quando enzimas de transcrição encontram essa estrutura, elas soltam-se do mRNA e a transcrição pára. Stem-loops ou hairpin loops nos terminais 3’ ou 5’ também regulam a estabilidade do mRNA em eucariotas, impedindo a ligação de ribonucleases—enzimas que degradam o RNA.

Estruturas secundárias podem formar estruturas terciárias mais complexas chamadas pseudonós. Os pseudonós são formados quando bases nas regiões de loop de estruturas secundárias interagem com bases complementares fora do loop. Essas estruturas terciárias desempenham papéis essenciais na estrutura e função do RNA.

A Estrutura Secundária e Terciária do tRNA Permite a Síntese de Proteínas

tRNAs servem como moléculas adaptadoras durante a tradução de mRNA para proteínas. Em uma das extremidades, os tRNAs carregam um aminoácido. Na outra extremindade, eles ligam-se a um codão do mRNA—uma sequência de três nucleótidos que codifica um aminoácido específico. As moléculas de tRNA geralmente têm 70-80 nucleótidos de comprimento e dobram-se em uma estrutura de stem-loops que se assemelha a um trevo. Três dos quatro stems têm loops contendo 7-8 bases. O quarto stem não tem loop e inclui os terminais livres de 5’ e 3’ da cadeia do RNA. O terminal 3’ funciona como o local de aceitação de aminoácidos.

A estrutura tridimensional do tRNA é em forma de L, com o local de ligação de aminoácidos em uma extremidade e um anticodão na outra extremidade. Anticodões são sequências de três nucleótidos que são complementares ao codão do mRNA. Esta forma peculiar do tRNA permite que ele se ligue aos ribossomas, onde ocorre a síntese proteica.

Leitura Sugerida

Clancy, Suzanne. “Chemical structure of RNA.” Nature Education 7 no. 1 (2008): 60. [Source]