Here, we present methods for high-throughput study of a series of the Mexican cavefish behaviors and vital staining of a mechanosensory system. These methods use free-software and custom-made scripts, providing a practical and cost-effective method for the studies of behaviors.
Cave-dwelling animals have evolved a series of morphological and behavioral traits to adapt to their perpetually dark and food-sparse environments. Among these traits, foraging behavior is one of the useful windows into functional advantages of behavioral trait evolution. Presented herein are updated methods for analyzing vibration attraction behavior (VAB: an adaptive foraging behavior) and imaging of associated mechanosensors of cave-adapted tetra, Astyanax mexicanus. In addition, methods are presented for high-throughput tracking of a series of additional cavefish behaviors including hyperactivity and sleep-loss. Cavefish also show asociality, repetitive behavior and higher anxiety. Therefore, cavefish serve as an animal model for evolved behaviors. These methods use free-software and custom-made scripts that can be applied to other types of behavior. These methods provide practical and cost-effective alternatives to commercially available tracking software.
The Mexican tetra, Astyanax mexicanus (Teleostei: Characidae), is unique among fishes for having two radically distinct alternative morphs – a sighted, surface-dwelling morph and a blind, cave-dwelling morph comprised of several distinct populations1. Although different in morphology and physiology, they are still interfertile2,3. These interfertile morphs appear to have evolved rapidly (~20,000 years)4, which makes them an ideal model system for the study of rapid adaptation. Cavefish are known to have a suite of divergent morphological and behavioral traits including increased density of taste buds, increased number of mechanosensors, foraging behavior tuned to a particular frequency of a vibrating stimulus, hyperactivity, and sleeplessness. Many of these behaviors likely evolved simultaneously, some of which have been suggested to be advantageous in the darkness of caves for foraging5 and conserving energy in dark and food-sparse environments6,7.
In many evolutionary model systems, it is difficult to acquire integrated knowledge on how animal morphology and behavior change in response to the environment because most species are distributed across a continuous gradient in complex environments. However, the stark contrast between the cave and surface morph Astyanax that evolved in highly contrasting environments delineated by a sharp ecotone has led to Astyanax emerging as an excellent model to understand animal evolution. This makes it possible to more easily link genes and developmental processes with adaptive traits and selection in the environment. Furthermore, recent biomedical investigations of these traits in Astyanax has shown that these traits may parallel human symptoms8,9,10. For example, loss of sociality and sleep, and gain of hyperactivity, repetitive behavior, and cortisol level are similar to what is observed in humans with autism spectrum disorder8.
To address the complex co-evolution of many behaviors and morphological traits, it is advantageous to assay many of them to highlight underlying genetic and molecular pathways. Presented herein are methods for characterizing the degree of cave-type behavioral phenotypes of surface, cave, and hybrid morphs of Astyanax. The focal behaviors analyzed to characterize phenotype are cave-adapted foraging behavior (vibration attraction behavior, referred to henceforth as VAB), and hyperactivity/sleep duration11,12. Also presented is an imaging method for the sensory system associated with VAB13. Recently, many open-source tracking software for running behavioral assays have become available14,15. These work very well for short videos, less than 10 minutes long. However, it becomes problematic if the video is longer because of intense computation/tracking time. Capable commercially available software can be expensive. The methods presented mainly use freeware and therefore are considered cost-effective and high-throughput methods. Also included are representative results based on these methods.
All procedures are performed following the guidelines described in "Principles of Laboratory Animal Care" (National Institute of Health publication no. 85-23, revised 1985) and the approved by University of Hawai'i at Manoa Institutional Animal Care and Use Committee animal protocol 17-2560-3.
1. Vibration attraction behavior (VAB) assay ( ≤ 10 min for entire recording procedure)
NOTE: Use an infrared sensitive camera or build an infrared camera by modifying a USB webcam. To modify a USB webcam, see a detailed description presented by the Keene Lab in this cavefish issue at JoVE (From this A. mexicanus issue), or a brief description in the Supplementary Materials.
2. Sleep and hyperactivity assay (24 h recording)
3. DASPMI or DASPEI staining of mechanosensory neuromasts
NOTE: DASPMI and DASPEI staining is light-sensitive and should be done in dark conditions. Following protocol is for both DASPMI and DASPEI by using DASPMI as an example.
The results presented herein are representative examples of what can be acquired with the presented methods. Therefore, results can deviate slightly from the ones presented here for both cavefish and surface fish depending on the experimental conditions.
Vibration attraction behavior
Representative results for VAB can be found in Figure 3 for both cave and surface fish. Note the edge-following behavior in the surface fish (Figure 3A; an attribute shared with cavefish) and the strong attraction of cavefish to the vibrating rod (Figure 3B). The peak attraction level was observed near 35 Hz for cavefish (Figure 3D) but not surface fish (Figure 3C), representing a key difference in the behavioral phenotypes of the two morphs. The peak in attraction around this frequency most likely represents the frequency of vibrations made by prey or food items20,21.
Sleep and hyperactivity assay
The criteria used herein to define sleep fit the response thresholds previously determined to be effective for Astyanax11. Sleep is characterized by extended periods of quiescence and is defined as immobility of >60 s and elevated response threshold12,22,23. In comparison to surface fish, shorter sleep durations occur in larval and adult cavefish11,12, therefore, sleep assays are an effective way to behaviorally phenotype Astyanax of all ages. While cavefish showed less-sleep (Figure 4B, shorter sleep duration in cavefish), they are also hyperactive (Figure 4A).
DASPMI or DASPEI staining of mechanosensory neuromasts
Neuromasts are composed of sensory cells that can be easily stained with DASPEI or DASPMI and observed in vivo under a fluorescent microscope. The presented result was the result of DASPMI staining. The number of superficial neuromasts is enhanced in the cranial region of the cavefish in comparison with surface fish (Figure 5C,D), and both the size-a proxy of the number of the mechanosensory hair cells-and number of superficial neuromasts are positively correlated with the level of vibration attraction behavior (number of approaches to the vibrating rod: Figure 5A,B).
Software | Analysis | version | website |
avfs | Activity/sleep | Version 1.0.0.6 | http://turtlewar.org/avfs/ |
Avisynth | VAB | Version 2.6.0 | http://avisynth.nl/index.php/Main_Page |
Cygwin | Activity/sleep | Version 2.11.0 | https://www.cygwin.com/ |
ImageJ | VAB and DASPEI | Version 1.52e | https://imagej.nih.gov/ij/ |
pfmap | Activity/sleep | Build 178 | http://pismotec.com/download/ (at “Download Archive” link at the bottom) |
SwisTrack | Activity/sleep | Version 4 | https://en.wikibooks.org/wiki/SwisTrack |
WinAutomation | Activity/sleep | Version 8 | https://www.winautomation.com/ (free stand-alone app for this procedure) |
Windows operating system | VAB and Activity/sleep | 7, 8 or 10 | https://www.microsoft.com/en-us/windows |
x264vfw | All analyses | NA | https://sourceforge.net/projects/x264vfw/ |
Table 1. List of freeware used in these analyses, and source website.
Figure 1: Schematic of vibration attraction behavioral assay experimental equipment. A glass rod attached to a speaker is tuned to a frequency of 40 Hz and submerged to a depth of approx. 0.5 cm at the onset of video recording. This figure is modified from Yoshizawa et al.5. Please click here to view a larger version of this figure.
Figure 2: Schematic of sleep assay experimental equipment. Tanks are custom-made from 0.7 cm thick transparent acrylic boards; septa are 0.3 cm thick completely opaque black acrylic boards. Opaque black acrylic boards are used for this part of the tanks so that fish cannot see each other. (A) Top view: Note that the outer chambers of the tank have tilted inward septa to accommodate differences in camera angle. (B,C) Front and side views, respectively. (D) Array of three tanks backlit with infrared light passing through a diffuser in order to homogenize the intensity of light across all tanks. Note that each tank's orientation is adjusted so that all the movements of each fish in its respective chamber are visible. Panel (C) and (D) are modified from16. Please click here to view a larger version of this figure.
Figure 3: Representative results of a 3-minute vibration attraction behavior assay. (A,B) Top view of the swimming path of surface fish (A) and cavefish (B); redlines are traces of the path that the fish took during the 3-min video. The black dot at the center indicates the location of the vibrating glass rod. wrMtrck ImageJ plugin was used to visualize the fish traces24. (C,D) Comparison of results from surface fish (C) and cavefish (D) exposed to multiple frequencies of vibration. Each dot represents each fish. Dark shaded areas are interquartile range. Note that across all frequencies, surface fish do not show notable attraction to vibration whereas cavefish show a maximum in attraction near 35 Hz. (C, D) Modified from 16. Please click here to view a larger version of this figure.
Figure 4: Representative results from several measures for activity analysis–Diurnal activity patterns in surface fish and cavefish. (A-B) Day (yellow bars) and night (black bars) scores of swimming distance (m per 10 min, A), and sleep duration (1,000 s/12 h, B). Each bar represents the mean ± standard errors of mean. Blue stars indicate the level of significance for statistical comparisons between surface fish (Sf) and cavefish (Cf). Cavefish and surface fish have significantly different day-night activities. Two-way ANOVA statistics for each phenotype are: for swimming distance (A) between surface fish (Sf) and cavefish (Cf): F1,399 = 185.8, P < 0.001, between day and night: F1,399 = 26.9, P < 0.001, interaction between population and day-night: F1,399 = 3.6, P = 0.060 (not significant: n.s.); for sleep duration (B) between Sf and Cf: F1,399 = 237.9, P < 0.001, between day and night: F1,399 = 164.1, P < 0.001, interaction between population and day-night: F1,399 = 26.5, P < 0.001. For both analyses, N = 200 and 201 for surface fish and cavefish, respectively. The difference between day and night activities were tested by post-hoc paired t-tests with Bonferroni corrections and denoted by black asterisks. *** denotes P < 0.001. ** denotes P < 0.01. A subset of the data was reused and updated from 11. Please click here to view a larger version of this figure.
Figure 5: Representative results of the relationship between VAB and neuromast. (A,B) The relationship between VAB and neuromast number and size in cavefish, surface fish, and the F1 hybrid progeny of surface fish x cavefish.Note that the normalized scores of vibration attraction (square root of number of approaches) is positively correlated with neuromast abundance (Pearson correlation coefficient r = 0.62, P < 0.001) and neuromast diameter (Pearson correlation coefficient r = 0.31, P < 0.01). Panel A and B are modified from5. (C,D) DASPMI staining of neuromasts in the cheek region of (C) a surface fish and (D) a cavefish. Scale bar in inset (C) and (D) are 1.0 mm. Please click here to view a larger version of this figure.
Supplementary Materials. Please click here to download this file.
These presented methods are easy-to-access but can be complicated to perform due to the nature of its freeware origins. Therefore, it is highly recommended to perform trial assays and analyses before any actual experimentation.
The rate of data generation can be rapid once the experimental and analytical framework are established. Once established, it is possible to record two fish in 7 min for the VAB assay, 30 fish in 24 h for the activity/sleep assay, and one fish in 2.5 to 3 min for neuromast imaging, starting from MS222 anesthesia to final image capture. The durations of the video and image analyses can vary considerably depending on the performance of the computer used. By using a PC with a 4-core CPU and 8 GB of RAM, VAB analysis can take 5-7 min per fish, activity/sleep analysis can take 6-8 h per group of 30 fish, and neuromast image analysis can take 5 or 10 min per fish (single side or both sides of images of the cranial region, respectively). Commercially available tracking software (Table of Materials) is an alternative for video analysis. It is very powerful in animal tracking but expensive (e.g., base software ~USD$5,000USD and multi-tracking module ~USD$4,000). At this moment, our tracking methods seem to achieve comparable accuracy of tracking, especially for the activity/sleep analysis, i.e., missing frames are typically lower than 15% of total frames. This method also showed a high reproducibility in four replicates (Supplementary Table 1). However, the difficulty in developing this system without an understanding of basic coding in Windows OS and Linux/Unix OS must be acknowledged.
During fish acclimation periods, and before and during behavioral assays, it is essential to provide the best possible and consistent living conditions for experimental fish. This includes feeding high-quality food at the same time and amount every day and maintaining high water quality (low ammonia, nitrates, nitrites, and dissolved organics, ~ pH 7, and similar conductivity around 700 µS). It is also important to perform assays in an area not disturbed by noises. Noisy footsteps, and clattering sounds may change behavioral responses and activity/sleep-patterns. To reduce the level of damage to mechanosensory units while handling fish, it is helpful to use a fine-mesh fish net while transferring fish; this will help to avoid damaging the mucus cupula of neuromasts.
DASPEI dye has sublethal effects on the fish, but excessive exposure can result in toxic effects. For example, immersing the fish in the DASPEI solution for 2 h will raise the chance of mortality during the recovery of post-anesthesia. DASPEI staining is light-sensitive and therefore should be done in dark conditions.
As for freeware installation, AviSynth software, Avisynth Virtual File System (avfs), and Pismo File Mount Audit Package (pfmap) required specific versions to work together cohesively. It was confirmed by this protocol that avfs (v1.0.0.5), AviSynth (2.6.0) and pfmap (1.7.8) work together, but at least the latest pfmap build did not work for the file-mounting procedure. For this reason, pay attention to the software versions (Table 1). VirtualDub works better under the 32-bit version instead of 64-bit. The setting of 15 frames per s provides a good time resolution and does not require excessive storage volume (1.6 GB for a 24-h sleep assay video and 3 MB for a VAB video). For ImageJ, the major difficulty can come from setting file paths in the macro. In Windows OS, the file path can be generally expressed as "C:Documentmy Document…". The ImageJ macro runs under the Java environment and needs an extra "" for the file path, that is, "C:Document\my Document\…". Please see the example ImageJ macro file. In addition, it may be necessary to install two plugins, Slice Remover and Object Tracker25, and assign the hot keys (Keyboard shortcuts) 6 and 8, respectively, so that the analyses work seamlessly (Plugins > Shortcuts > Add Shortcuts…26). SwisTrack has a function to set the tracking parameters, but it is possible that a freeze and/or crash may occur while setting the tracking parameters. It is better to edit the parameter in a text editor app such as Notepad++. For details of parameter settings, please see27. The Cygwin (Unix emulator) installer includes a package installer to install the Perl package, which is not included in the default install setting. It is recommended to specifically select the Perl package during installation of Cygwin.
Although, this procedure is limited to a lateral line-based behavior (VAB) and swimming activity and sleep, this animal tracking system can be adapted to other behaviors including stereotypic repetitive behaviors, social interactions, and the asymmetric usage (left/right) of cranial neuromasts during foraging (laterality)13, although these methods may require shallow arenas such as those suggested by idTracker14. With a suite of evolved behaviors, one may apply different scripts to analyze the tracked X- and Y-axes data and investigate different behavioral patterns. This analysis pipeline is intended to provide a foundation to resolve the mechanism of the evolution in multiple behaviors, and also how comorbid autism-like behaviors are regulated by genetic, epigenetic, and the environmental factors.
The authors have nothing to disclose.
We thank all the members of the Yoshizawa lab including N. Cetraro, N. Simon, C. Valdez, C. Macapac, J. Choi, L. Lu, J. Nguyen, S. Podhorzer, H. Hernandes, J. Fong, J. Kato, and I. Lord for fish care on the experimental fish used in this manuscript. We also thank A. Keene lab members including P. Masek to train MY to assemble IR CCD camera. Lastly, we would like to thank the Media Lab – College of Social Sciences – School of Communications at the University of Hawai'i Mānoa for their invaluable help with making the video, especially B. Smith, J. Lam, and S. White. This work was supported by Hawaiian Community Foundation (16CON-78919 and 18CON-90818) and National Institute of Health NIGMS (P20GM125508) grants to MY.
4-Di-1-ASP (4-(4-(dimethylaminostyryl)-1-methylpyridinium iodide) | MilliporeSigma | D3418 | |
880 nm wave length black light | Advanced Illumination | BL41192-880 | |
avfs | freeware | Version 1.0.0.6 | http://turtlewar.org/avfs/ |
Avisynth | freeware | Version 2.6.0 | http://avisynth.nl/index.php/Main_Page |
Cygwin | freeware | Version 2.11.0 | https://www.cygwin.com/ |
Cylindrical assay chamber (Pyrex 325 ml glass dish) | Corning | 3140-100 | 10 cm diameter 5 cm high |
Ethovision XT | Noldus Information Technology, Wageningen, The Netherlands | Version 14 | https://www.noldus.com/animal-behavior-research/products/ethovision-xt |
Fish Aquarium Cylinder Soft Sponge Stone Water Filter, Black | Jardin (through Amazon.com) | NA | Sponge filter for Sleep/hyperactivity recording system |
Grade A Brine shrimp eggs | Brine shrimp direct | BSEA16Z | |
ImageJ | freeware | Version 1.52e | https://imagej.nih.gov/ij/ |
macro 1.8/12.5-75mm C-mount zoom lens | Toyo | NA | Attach to USB webcam by using c-mount, which is printed in 3-D printer |
Neutral Regulator | Seachem | NA | |
Optical cast plastic IR long-pass filter | Edmund optics | 43-948 | Cut into a small piece to fit in the CCD of USB webcam |
pfmap | freeware | Build 178 | http://pismotec.com/download/ (at “Download Archive” link at the bottom) |
Reef Crystals Reef Salt | Instant Ocean | RC15-10 | |
SwisTrack | freeware | Version 4 | https://en.wikibooks.org/wiki/SwisTrack |
USB webcam (LifeCam Studio 1080p HD Webcam) | Microsoft | Q2F-00013 | Cut 2-2.5 cm of the front |
WinAutomation | freeware | Version 8 | https://www.winautomation.com/ (free stand-alone app for this procedure) |
Windows operating system | Microsoft | 7, 8 or 10 | https://www.microsoft.com/en-us/windows |
x264vfw | freeware | NA | https://sourceforge.net/projects/x264vfw/ |