The storage conditions of platelet products create an ideal environment for bacterial contaminants to multiply to dangerous levels. The goal of this study was to use a colony forming assay to evaluate a riboflavin based pathogen reduction process against high titer bacterial contamination in human platelet products.
Contamination of platelet units by bacteria has long been acknowledged as a significant transfusion risk due to their post-donation storage conditions. Products are routinely stored at 22 °C on an agitating shaker, a condition that can promote bacterial growth. Although the total number of bacteria believed to be introduced into a platelet product is extremely low, these bacteria can multiply to a very high titer prior to transfusion, potentially resulting in serious adverse events. The aim of this study was to evaluate a riboflavin based pathogen reduction process against a panel of bacteria that have been identified as common contaminants of platelet products. This panel included the following organisms: S. epidermidis, S. aureus, S. mitis, S. pyogenes, S. marcescens, Y. enterocolitica, B. neotomae, B. cereus, E. coli, P. aeruginosa and K. pneumoniae. Each platelet unit was inoculated with a high bacterial load and samples were removed both before and after treatment. A colony forming assay, using an end point dilution scheme, was used to determine the pre-treatment and post-treatment bacterial titers. Log reduction was calculated by subtracting the post-treatment titer from the pre-treatment titer. The following log reductions were observed: S. epidermidis 4.7 log (99.998%), S. aureus 4.8 log (99.998%), S. mitis 3.7 log (99.98%), S. pyogenes 2.6 log (99.7%), S. marcescens 4.0 log (99.99%), Y. enterocolitica 3.3 log (99.95%), B. neotomae 5.4 log (99.9996%), B. cereus 2.6 log (99.7%), E. coli ≥5.4 log (99.9996%), P. aeruginosa 4.7 log (99.998%) and K. pneumoniae 2.8 log (99.8%). The results from this study suggest the process could help to lower the risk of severe adverse transfusion events associated with bacterial contamination.
Transfusion of platelets, plasma, packed RBCs and whole blood products play a major role in modern medicine and can be used to treat various medical conditions, replace vital fluids and ultimately save lives. Platelets are a cellular product that are either isolated from whole blood and pooled into a transfusable dose or are collected through the process of platelet apheresis. The main role of platelets in the body is to stop bleeding at wound sites and to help maintain hemostasis. Patients suffering from a low platelet cell count (thrombocytopenia) are susceptible to spontaneous bleeding events and are transfused with platelets to bring their platelet cell count back into a normal range. Collected platelets are stored for a maximum of 5-7 days and are stored at 22 ± 2 °C while under constant agitation.
Despite the life saving properties of platelet transfusions there remains a slight risk to transfusion recipients due to contamination of these products by parasites, bacteria and viruses11. The implementation of viral nucleic acid testing (NAT) has significantly decreased the risk of viral transmission of major blood borne agents, such as hepatitis C virus (HCV), hepatitis B virus (HBV) and human immuno-deficiency virus (HIV)5. A recent publication from the Canadian Blood Services estimates the residual risk for these agents to be 1 per 8 million donations for HIV, 1 per 6.7 million donations for HCV and 1 per 1.7 million donations for HBV15.
Although bacteria typically garner less attention in the general public, the frequency of bacterial contamination in platelet products has been estimated to be as high as 1:1,0007 and because millions of platelet products are transfused each year many recipients are exposed to potentially life threatening complications like sepsis6. Research suggests that the bacterial load at the time of contamination is low, <100 colony forming units (CFU)/product2,16, however the nutrient rich environment and room temperature storage allows contaminating bacteria to proliferate to dangerously high titers prior to transfusion. Currently, the only approved methods available to prevent bacterially contaminated products from reaching a platelet recipient is through the use of culture based systems and rapid point of care testing. Briefly, for culture based systems platelet products are stored on an agitator at 22 °C for 12-24 hr to allow bacteria to proliferate in the product, upon which a 4-8 ml sample is removed from the platelet product and inoculated into a bottle containing nutrient media. The bottle is placed into an instrument which monitors the bottle for bacterial growth. If the instrument detects bacterial growth in the bottle it is flagged and the corresponding platelet unit is discarded. While this process is reasonably successful at detecting fast growing organisms, many of the slow growing species do not grow to a high enough titer to be detected, thus creating the potential for false-negative units to be released for transfusion7,12,14,16,22. Unlike culture based detection systems, rapid point of care testing is typically performed later in the platelet storage period when the bacterial load has increased significantly. The higher titers are required since point of care tests are less sensitive than the culture based systems, and only reliably detect bacteria once they reach a titer ≥1 x 103 CFU/ml17. However such tests can provide results within 1 hour of sampling. Variability in the performance of these tests have led to the release of a false negative product, causing a fatal septic reaction in the recipient9.
An alternative way to combat the issue of bacterial contamination of platelet products is through the routine use of a pathogen reduction process that can inactivate contaminating bacteria instead of try to detect them. Using riboflavin as a photosensitizer, in combination with UV light, has been shown to reduce the infectivity of a broad range of pathogenic blood-borne contaminants, including bacteria3,4,8,10,19-21.The use of riboflavin and UV light for pathogen reduction is non-toxic and non-mutagenic, and riboflavin and UV light-treated components have been shown to be safe for transfusion recipients as well as for those handling blood products18. Briefly, riboflavin molecules can associate with the nucleic acids (DNA and RNA) of bacteria, parasites, viruses and any nucleated cell (e.g. white blood cells). Exposure to UV light activates riboflavin, causing a chemical alteration to functional groups of the nucleic acids (primarily guanine bases), thus preventing replication and/or transcription of the nucleic acids and leaving the organism inactivated13. Anucleated cells like platelets and red blood cells are not affected by the riboflavin chemistry due to the lack of nucleic acid.
Previous work with riboflavin and UV light technology evaluated a select group of bacteria using an experimental design intended to mimic a platelet product contaminated with a clinically relevant bacterial load (<20 CFU/product)8. The goal of this study was to evaluate the riboflavin and UV light process against high titer bacterial contamination (>1.0 x 105 CFU/ml) in platelet products treated in plasma in order measure the total bacterial reduction capacity of the system. Based on data collected from hemovigilance studies1, a panel of commonly occurring gram negative and gram positive organisms was selected for evaluation in this study and included the following species: Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus mitis, Streptococcus pyogenes, Serratia marcescens, Yersinia enterocolitica, Brucella neotomae, Bacillus cereus (vegetative form), Esherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. All organisms, except B. cereus, were obtained from ATCC and a priority was placed on obtaining bacterial strains that had been identified as being isolated from blood components. The B. cereus tested in this study is a clinical strain isolated internally from a contaminated platelet product.
1. Bacteria Suspension Preparation:
2. Platelet Product Preparation:
3. Riboflavin and UV Light Process:
4. Bacterial Titer
The reduction of eleven different bacterial species was evaluated using the riboflavin and UV light based PRT process. These agents represent some of the more common contaminants of platelet products and include five Gram positive and six Gram negative organisms. At least six platelet products were evaluated per organism and each product was inoculated with enough bacteria to yield >1.0 x 105 CFU/ml final titer of bacteria in the platelet product. Prior to treatment a sample was removed to determine the pre-treatment titer, after which the platelet product was promptly treated with the riboflavin and UV process. Following treatment of the platelet products the following log reductions were observed: S. epidermidis 4.7 log (99.998%), S. aureus 4.8 log (99.998%), S. mitis 3.7 log (99.98%), S. pyogenes 2.6 log (99.7%), S. marcescens 4.0 log (99.99%), Y. enterocolitica 3.3 log (99.95%), B. neotomae 5.4 log (99.9996%), B. cereus 2.6 log (99.7%), E. coli ≥ 5.4 log (99.9996%), P. aeruginosa 4.7 log (99.998%) and K. pneumoniae 2.8 log (99.8%) (Figure 2). All units met the system specifications as stated above for the riboflavin and UV process. Additional reduction testing was performed with S. pyogenes using buffy coat derived platelets. No significant difference was observed in the reduction of S. pyogenes in buffy coat derived platelets versus apheresis platelets (data not shown).
Table 1: Growth conditions for bacterial species evaluated using riboflavin and UV light. A panel of both Gram negative and Gram positive bacteria that have been shown to contaminate platelet products were selected for this study. The growth conditions (temperature and media type) used to propagate and titer the organisms are shown.
Figure 1: Riboflavin and UV light pathogen reduction process. Riboflavin was dissolved in 0.9% saline at a nominal concentration of 500 µM. The solution was sterile connected and drained into each platelet product. Bacteria was added aseptically to each platelet unit and then treated with 6.2 J/ml of UV energy (approximately 6–10 min). In this in vitro study the post-treatment platelet unit was sampled to determine the final bacterial titer.
Figure 2: Reduction of different bacterial species when treated with riboflavin and UV light. Riboflavin and UV light was used to reduce the bacterial loads of common bacterial contaminants of platelet products. The log10 reduction is the difference between the average pre-treatment titer and the average post-treatment titer. Please click here to view a larger version of this figure.
Bacterial screening has become common practice in blood banking institutions and for many locations it serves as the primary method to prevent transfusion of bacterially contaminated platelets. Although bacterial screening typically interdicts the majority of fast growing Gram negative bacteria like S. marcescens, E. coli and E. cloacae, it struggles to detect slow growing Gram positive bacteria like S. aureus, Streptococcus spp. and S. epidermidis8. Unfortunately, these three Gram positive bacteria are implicated in upwards of 50% of all contaminated platelet units and transfusion of platelet products containing these three organisms has lead to patient mortality1.
Bacterial screening relies on the bacterial titer in a platelet product to be sufficiently high enough so that at least one organism is contained within the typical 4-8 ml screening sample. If the bacterial titer is not sufficiently high for a bacterium to be captured in the 4-8 ml sample volume, the unit is incorrectly flagged as negative and it is released for transfusion. An alternative approach to bacterial screening could be to employ a proactive process that can be performed on all platelet units and that could render the contaminating organisms as non-functional.
In this study, high titers of bacteria were purposely added to platelet units to test the total reduction capacity of the riboflavin and UV light pathogen reduction process. Although the bacterial loads tested in this study far exceed those normally found in blood products at the time of donation, this study helps to demonstrate that the riboflavin and UV light process is able to significantly reduce the titer of viable bacteria in a contaminated platelet unit by 2.6 to 5.4 log (99.7-99.9996% reduction of contaminating bacteria) (Figure 2). To obtain an accurate log reduction value, it is critical that the operator have good aseptic technique along with precise pipetting skills when performing the bacterial titer steps. Imprecise pipetting when performing serial dilutions can lead to an accumulation of errors, thus an inaccurate titer measurement.
The data collected in this study supports previous work with riboflavin and UV light, which challenged the system against low level, clinically relevant bacteremia (<20 CFU/unit). The previous study was designed to mimic an actual clinical contamination event and the results showed riboflavin and UV light was effective in preventing bacterial growth over the 7-day platelet storage period. Modeling based on the data from the previous study suggests that the current risk estimates of bacterial contamination of platelet products could be reduced by as much as 98% from current levels8. The riboflavin and UV light process compares favorably to bacterial screening, which only demonstrated a 66% effectiveness to detect bacterial contaminants in platelet units when challenged with a clinically relevant bacterial load8.
As with all technologies, PRT treatment of platelet products to prevent complications associated with bacterially contaminated platelet units has its limitations. PRT systems are not effective against bacterial spores and do not inactivate endotoxin, thus even if a PRT system can inactivate high titers of Gram negative bacteria the remaining endotoxin can still cause septic shock in the recipient. PRT is best performed early during storage before the bacteria can propagate to high titers.
In conclusion, as demonstrated by the combination of these two studies, the riboflavin and UV light process is effective at reducing the bacterial loads of both Gram negative and Gram positive organisms and may offer a viable alternative to bacterial screening. Routinely treating platelet products with riboflavin and UV light also has the added benefit of reducing the potential transmission of other blood borne agents like viruses and parasites.
The authors have nothing to disclose.
The authors have no acknowledgements.
Mirasol Illuminator | Terumo BCT | N/A | |
Mirasol Treatment/Storage Bag | Terumo BCT | N/A | |
Hematology Analyzer | Beckman-Coulter | Ac•T diff | |
Blood Gas Analyzer | Siemens | RapidLab 1265 | |
Sterile Docking Device | Terumo BCT | TSCD | |
Platelet Incubator | Helmer | PC2200 | |
Orbital Incubator Shaker | Lab-Line | 4628 | |
Dry Incubator | Fisher | Iso-temp | |
Class II A/B3 Biosafety Cabinet | Thermo-forma | 1286 | |
Tubing Sealer | Sebra | Smart Sealer II | |
Table Top Centrifuge | IEC | Centra GP8R | |
10 mL Syringe | BD | 309604 | |
30 mL Syringe | BD | 309650 | |
5 mL Dilution Tube | VWR | 211-0058 | |
50 mL Conical Tube | Corning | 430290 | |
Micropipette | Gilson | P-200 | |
Micropipette | Rainin | R-200 | |
Repeat Pipette | Eppendorf | 4780 | |
1-200 µL Filter Tip | Costar | 4810 | |
25 mL Disposable Serrological Pipette | Costar | 4489 | |
5 mL Disposable Serrological Pipette | Costar | 4487 | |
35 mL 500 µM Riboflavin | Terumo BCT | 35 mL 500 µM | |
Brucella Agar with 5% Horse Blood | BBL | 221547 | |
Brain Heart Infusion | Teknova | B9993 | |
Peptone Water | BD | 257087 | |
Trypticase Soy Broth | BD | 299113 | |
Trypticase Soy Agar | Remel | R01917 | |
Heat Inactivated Horse Serum | Gibco | 26050 |