Vibrational Spectra of a N719-Chromophore/Titania Interface from Empirical-Potential Molecular-Dynamics Simulation, Solvated by a Room Temperature Ionic Liquid
Vibrational Spectra of a N719-Chromophore/Titania Interface from Empirical-Potential Molecular-Dynamics Simulation, Solvated by a Room Temperature Ionic Liquid
Vibrational Spectra of a N719-Chromophore/Titania Interface from Empirical-Potential Molecular-Dynamics Simulation, Solvated by a Room Temperature Ionic Liquid
A dye-sensitized solar cell was solvated by RTILs; using optimized empirical potentials, a molecular dynamics simulation was applied to compute vibrational properties. The obtained vibrational spectra were compared with experiment and ab initio molecular dynamics; various empirical potential spectra show how partial-charge charge parameterization of the ionic liquid affects vibrational spectra prediction.
Krishnan, Y., Byrne, A., English, N. J. Vibrational Spectra of a N719-Chromophore/Titania Interface from Empirical-Potential Molecular-Dynamics Simulation, Solvated by a Room Temperature Ionic Liquid. J. Vis. Exp. (155), e60539, doi:10.3791/60539 (2020).