Dendritic spines are important cellular features of the nervous system. Here live imaging methods are described for assessing the structure and function of dendritic spines in C. elegans. These approaches support the development of mutant screens for genes that define dendritic spine shape or function.
Dendritic spines are specialized sites of synaptic innervation modulated by activity and serve as substrates for learning and memory. Recently, dendritic spines have been described for DD GABAergic neurons as the input sites from presynaptic cholinergic neurons in the motor circuit of Caenorhabditis elegans. This synaptic circuit can now serve as a powerful new in vivo model of spine morphogenesis and function that exploits the facile genetics and ready accessibility of C. elegans to live-cell imaging.
This protocol describes experimental strategies for assessing DD spine structure and function. In this approach, a super-resolution imaging strategy is used to visualize the intricate shapes of actin-rich dendritic spines. To evaluate the DD spine function, the light-activated opsin, Chrimson, stimulates the presynaptic cholinergic neurons, and the calcium indicator, GCaMP, reports the evoked calcium transients in postsynaptic DD spines. Together, these methods comprise powerful approaches for identifying genetic determinants of dendritic spines in C. elegans that could also direct spine morphogenesis and function in the brain.
Dendritic spines are specialized cellular structures that receive input from neighboring neurons for synaptic transmission. Activation of neurotransmitter receptors elevates intracellular calcium and downstream signaling pathways in these characteristic neuronal protrusions1. Because of the fundamental importance of dendritic spines to neurotransmission and their misregulation in neurodevelopmental diseases1, the discovery of factors that modulate dendritic spine morphogenesis and function is of high interest to the field of neuroscience.
Recently, dendritic spines have been identified in the C. elegans nervous system based on key characteristics shared with mammalian spines2. This determination is crucial because it opens the possibility of exploiting the advantages of C. elegans to investigate spine biology. Dendritic spines on Dorsal D (DD) motor neurons receive input from cholinergic neurons (VA and VB) in the ventral nerve cord (Figure 1A)2,3,4. Here, imaging methods are presented to explore the structure of DD dendritic spines and their function in vivo in an intact nervous system that is readily accessible to live imaging and genetic analysis. For monitoring the shape of dendritic spines, (1) cytosolic fluorescent proteins, which fill the dendritic process and spines; (2) membrane-bound fluorescent proteins, which decorate the border of dendritic spines and dendrites; or (3) the actin markers, LifeAct5 or Utrophin6, which are enriched in dendritic spines are used, thus revealing their shape. To monitor the functionality of DD spines, GCaMP fluorescence is used to detect Ca++ transients evoked by activation of the red-shifted opsin, Chrimson, in presynaptic cholinergic neurons7. Both strategies are expected to facilitate the study of DD dendritic spines in wild-type and mutant animals.
1. Determination of the structure of the DD dendritic spines
2. Assessing activation of DD dendritic spines by presynaptic cholinergic signaling
Measurements with three independent markers (cytosolic mCherry, LifeAct::GFP, MYR::mRuby) yielded an average density of 3.4 ± 1.03 DD dendritic spines per 10 µm of DD dendrite in wild-type young adults (Figure 1B,C). For this analysis, the measurements obtained with the GFP::Utrophin marker that yielded a significantly lower spine density were excluded (2.4 ± 0.74, Figure 1) due to interactions of Utrophin with the actin cytoskeleton6 that potentially drives spine morphogenesis15. The measurements of spine density in the light microscope are comparable to the value of 4.2 spines/10 µm dendrite obtained from the reconstruction of 12 spines from electron micrographs of the DD1 neuron2. The live-cell imaging approach confirmed that the thin/mushroom-shaped morphology of the DD spines predominates in the adult vs. alternative spine shapes (e.g., filopodial, stubby, branched) (Figure 2B), which is also typical for spines in the mature mammalian nervous system16.
An optogenetic strategy was used to ask if the presumptive dendritic spines detected by high-resolution light microscopy (Figure 1 and Figure 2) are responsive to neurotransmitter release from presynaptic sites, a characteristic hallmark of dendritic spines in mammalian neurons. Green light (561 nm) was used to activate a channelrhodopsin variant, Chrimson, in presynaptic cholinergic neurons and blue light (488 nm) to detect Ca++-dependent fluorescence emitted by a cytoplasmic GCaMP probe in postsynaptic DD dendritic spines. This experiment detected transient bursts of GCaMP signal in DD spines immediately after optogenetic activation of Chrimson in presynaptic VA neurons (Figure 3). The success of this experiment depends on the reliable expression of Chrimson in all presynaptic VA neurons. In this case, a chromosomal integrant17 of the Punc-4::Chrimson marker was used to ensure consistent VA expression. This experiment could also be conducted with an extrachromosomal array. Chrimson expression in a specific VA neuron can be independently confirmed, for example, by coupling the Chrimson transgene to an SL2 transpliced leader sequence with a downstream nuclear-localized GFP as a co-expression marker2. It is essential to perform a control experiment in the absence of ATR to confirm that the measured GCaMP signal depends on optogenetic activation of Chrimson, which is strictly ATR-dependent (Figure 4D). Finally, because evoked Ca++ signals are transient, it is crucial to adopt an imaging protocol that allows rapid switching (<1 s) between 561 nm excitation and GCaMP signal acquisition with the 488 nm laser (Figure 4).
Figure 1: Labeling of DD dendritic spines. (A) (Top) Six Dorsal D (DD1-DD6) neurons in the ventral nerve cord of C. elegans. (Bottom) In adults, ventrally directed DD spines (arrowhead) contact presynaptic terminals of Ventral A (VA) and Ventral B (VB) motor neurons (magenta), and DD commissures extend to the dorsal nerve cord to provide GABAergic output to body muscles (arrow)18. This figure has been modified from Reference2. (B) Fluorescent micrographs (Airyscan) of DD spines labeled with cytosolic mCherry, myristoylated mRuby (MYR::mRuby), LifeAct::GFP and GFP::Utrophin in young adult worms. Gray arrowheads point to spines. Scale bar = 2 µm. (C) Density (spines/10 µm) of DD neuron dendritic spines labeled with cytosolic mCherry (3.77 ± 0.9), MYR::mRuby (3.09 ± 0.8), LifeAct::GFP (3.44 ± 1.1) or GFP::Utrophin (2.41 ± 0.8). All samples are normally distributed. One-Way ANOVA shows that spine densities for cytosolic mCherry, MYR::mRuby, and LifeAct::GFP are not significantly (NS) different, whereas spine density is reduced for GFP::Utrophin vs. cytosolically labeled mCherry (p = 0.0016) and LifeAct::GFP (p = 0.0082). The dashed red line represents the spine density of DD neurons assessed from 3D EM reconstruction (4.2 spines/10 µm). This figure has been modified from Reference2. Please click here to view a larger version of this figure.
Figure 2: Imaging DD dendritic spines. (A) (Top) Schematic of spine shapes. (Bottom) Airyscan images of each type of spine (Scale bar = 500 nm) labeled with LifeAct::GFP (green) and 3D-reconstructions by serial electron micrographs of a high-pressure frozen adult (blue). (B) Spine frequency by type, visualized with LifeAct::GFP: Thin/Mushroom (55.5 ± 14.5%), Filopodial (10.3 ± 8.70%), Stubby (18.8 ± 10.7%), Branched (15.42 ± 6.01%). Spines frequency by type visualized with MYR::mRuby: Thin/Mushroom (52.2 ± 16.5%), Filopodial (5.68 ± 7.0%), Stubby (33.1 ± 14.8%), Branched (9.02 ± 9.6%). Unpaired T-test, Filopodial (p = 0.0339); Stubby (p = 0.0009) and Branched (p = 0.011) spines labeled with the MYR::mRuby marker are significantly different from LifeAct::GFP. This figure has been modified from Reference2. Please click here to view a larger version of this figure.
Figure 3: Strategies for acquiring high-resolution images of DD spines. (A-B) (Top) Fluorescent images of DD1 dendrites labeled with a cytosolic marker (mCherry) by (A) Airyscan detector and (B) Nyquist acquisition. (Bottom) DD dendrite (red) is depicted with an image analysis software (auto-path option of filament tracer), and DD spines (blue) are graphically illustrated using the semi-automated spines detection module. Arrow points to branched spine enlarged in C and D. Arrowheads denote neighboring thin/mushroom spines enlarged in C and D. Scale bar = 2 µm. (C-D) Enlarged examples of (top) branched spine (arrow) and (bottom) two neighboring thin/mushroom spines (arrowheads) obtained with (C) Airyscan detector or by (D) Nyquist acquisition. Scale bar = 500 nm. Data reproduced from2. Please click here to view a larger version of this figure.
Figure 4: Assessing the function of DD spines. (A) DD motor neurons express the Ca++ indicator GCaMP6s (green), and VA motor neurons express the channelrhodopsin-variant, Chrimson (magenta)7. (B) Schematic depicting method for mounting worms for Ca++ measurements. (1) On a clean microscope slide, (2) place 2 µL of 0.05 µm poly beads, (3) use a platinum wire ("worm pick") to add a small globule of super glue and (4) swirl into the solution to generate filamentous strands of glue. (5) Add 3µL of M9 buffer. (6) Place approximately ten L4 larvae in the solution, (7) apply coverslip and seal edges with Vaseline/wax. (C-D) Activation of VA neurons correlates with Ca++ transients in DD1 spines. GCaMP6s fluorescence imaged (at 0.5 s intervals) with periodic light activation of Chrimson (2.5 s intervals) evokes Ca++ transients with (C) +ATR (n = 12) but not in (D) controls (-ATR, n = 12). Panels are snapshots over time (s), before and after pulse of 561 nm light (vertical pink line). Scale bars = 2 µm. GCaMP6s signal is acquired from an ROI (Region of Interest) at the tip of each spine. (E) GCaMP6s fluorescence during the 10 s recording period plotted for +ATR (green) vs -ATR (control, gray) (n = 12 videos). Vertical pink bars denote 561 nm illumination (e.g., Chrimson activation). Each animal was stimulated 4 times with 561 nm light. Measurements were collected before and after each pulse of 561 nm light. (F) Plot of the GCaMP6s fluorescence before and after each pulse of 561 nm light. GCaMP6s fluorescence was measured 1 s after each pulse of 561 nm light. Because samples are not normally distributed, a paired non-parametric Friedman test was applied to correct for multiple comparisons of GCaMP6s fluorescence before vs. after 561 nm light stimulation for worms grown either with ATR (+ATR, green) (*** p = 0.0004, n = 48 measurements) or in the absence of ATR (-ATR, gray) (NS, Not Significant, p = 0.0962, n = 48 measurements). This figure has been modified from Reference2. Please click here to view a larger version of this figure.
Supplementary File 1: List of plasmids used in the study. Please click here to download this File.
Supplementary File 2: Composition and preparation of M9 buffer. Please click here to download this File.
The Airyscan detector was selected to acquire snapshots of DD spines because it affords a higher signal-to-noise ratio and better resolution than conventional confocal microscopes19,20. AiryScan imaging also allows the use of conventional fluorescent proteins (e.g., GFP, mCherry, etc.), now widely available for C. elegans. Although higher resolution images can be obtained with other super-resolution methods (e.g., STORM, STED, PALM), these methods require photo-activatable or photo-switchable fluorescent proteins21. As an alternative to Airyscan, conventional confocal microscopes are recommended. For example, imaging with Nyquist acquisition (Figure 3) achieves the pixel size using a 40x/1.3 objective of 123.9 nm, sufficient to distinguish the spine morphological types (Figure 2).
For determining spine density, using a cytosolic fluorescent protein such as (1) mCherry or GFP, (2) LifeAct to label the actin cytoskeleton, or (3) a myristoylated fluorescent protein (e.g., MYR::mRuby) to label the plasma membrane (Figure 1B) is recommended. In comparison, the F-actin binding protein Utrophin reduces spine density (Figure 1C), indicating a negative effect on spine morphogenesis when Utrophin is over-expressed.
The current imaging methods should help identify genetic variants that govern spine morphology1,16. DD spine morphology (i.e., thin/mushroom, filopodial, stubby, branched, see Figure 2) can be assessed from single 2D-projections of the ventral nerve cord lateral images since most DD spines adopt a characteristically ventrally-directed orientation. In these comparisons, it is essential to use the same fluorescent marker for each condition since apparent spine morphological types seem to be influenced by the labeling method (e.g., MYR::mRuby vs. LifeAct::GFP). In addition, it was noted that the spine shapes are dynamic and likely change shape in response to the external signals2,16. Thus, it is also essential to compare spine shapes between genotypes at similar developmental stages and under similar conditions.
The orientation of the C. elegans ventral cord is critically vital for accurate image acquisition. Both the ventral and dorsal cords on opposite sides of the animal should be visible in the same Z-plane, indicating that the worm is oriented on its side (Figure 1B). It is best not to collect images of worms moving or in contact with other worms or bubbles near the ventral cord, as this can degrade images of spines.
For in vivo calcium imaging, fresh slides need to be prepared immediately before each acquisition. It is best to image worms in contact with only thin glue fibers vs. "globs" of glue which tend to desiccate worms and degrade the image (Figure 4B). In the experiment shown in Figure 4, the pulse of 561 nm light activates the entire field of view. For increasing the temporal and spatial resolution to detect local Ca++ transients, for example, within individual DD spines, a galvo mini scanner set up for the 561 nm laser line can be used to stimulate a smaller region of interest17.
The authors have nothing to disclose.
Imaging and analysis on Imaris were performed in the Vanderbilt Cell Imaging Shared Resource (CIRS) supported by NIH (CA68485, DK20593, DK58404, DK59637, and EY08126). The LSM 880 is supported by grant 1S10OD201630. Imaging on a Nikon spinning disk was performed at the Nikon Center of Excellence. We thank Jenny Schafer, CISR director, and Bryan Millis for training and insightful discussions and members of the Burnette lab: Dylan Burnette, Aidan Fenix, and Nilay Taneja for advice. This work was supported by National Institutes of Health grants to DMM (R01NS081259 and R01NS106951) and an American Heart Association grant to ACC (18PRE33960581).
All-trans retinal (ATR) | Sigma-Aldrich | R2500-100MG | Necessary cofactor for neuronal excitation with Chrimson |
diH2O | MilliQ | To prepare M9 buffer | |
Ethanol 100% | Sigma | 64-17-5 | To dilute ATR and make control plates for neuronal excitation |
Ethyl 3-aminobenzoate methanesulfonate salt (tricaine) | To immobilize animals for imaging dendritic spines | ||
ImageJ | NIH | (Schindelin J et al., 2012) | Open source image processing software |
KH2PO4 | Fisher Bioreagents | 7758-11-4 | To prepare M9 buffer |
Levamisole hydrochloride | Sigma | 16595-80-5 | To immobilize animals for imaging dendritic spines |
MgSO4 | Fisher Chemical | M63-500 | To prepare M9 buffer |
Microscope cover glass | Fisherbrand | 12542B | To mount animals for microscopy acquisition |
Na2HPO4 | Fisher Scientific | S369-500 | To prepare M9 buffer |
NaCl | Fisher Chemical | S671-3 | To prepare M9 buffer |
NIS Elements version 05.21 | Nikon | To analyze images and movies (e.g., Deconvolution, image alignment) | |
Polybeads carboxylate 0.05um microspheres | Polysciences, Inc | 15913-10 | To immobilize animals for imaging Ca++ transients |
Prism | For statistical analysis and graphing normalized Ca++ transients | ||
SeaKen ME agarose | Lonza | 50014 | To make agarose pads to mount animals for imaging |
Super Glue | The gorilla company | To immobilize animals for imaging Ca++ transients | |
Superfrost microscope slides | Fisherbrand | 22-034-980 | To mount animals for microscopy acquisition |
vaseline | Covidien | 8884430300 | To seal sample for confocal snapshots |
Wax | Fisherbrand | 23-021-399 | Paraplast tissue embedding medium |
Microscope for super-resolution imaging | |||
LSM880 | Zeiss | ||
AiryScan detector | Zeiss | ||
Plan Apochromat (oil) 63x/ 1.40 NA, WD = 0.19 mm | |||
Laser lines | |||
Stage controller | |||
Microscope for Nyquist image acquisition | |||
A1R Confocal | Nikon | ||
Plan Fluor (oil) 40x/1.3 NA, WD 0.24 mm | |||
488 nm, 16mW | |||
561 nm, 17mW | |||
Microscope to monitor evoked Ca++ transients in dendritic spines | |||
Spinning Disk Confocal | Nikon | ||
Andor DU-897 EMCCD camera | |||
Spinning disk Head CSU-X1 | Yokogawa | ||
Apo TIRF (oil) 100x/1.49 NA ,WD 0.12 mm | |||
488 nm, 65mW | |||
561 nm, 86mW | |||
525 nm (+/- 18 nm) | |||
605 nm (+/- 35 nm) |