Presented here is a protocol to evaluate the inhibition efficacy of chemical compounds against in vitro intracellular growth of Toxoplasma gondii using a luciferase-based growth assay. The technique is used to confirm inhibition specificity by genetic deletion of the corresponding target gene. The inhibition of LHVS against TgCPL protease is evaluated as an example.
Toxoplasma gondii is a protozoan pathogen that widely affects the human population. The current antibiotics used for treating clinical toxoplasmosis are limited. In addition, they exhibit adverse side effects in certain groups of people. Therefore, discovery of novel therapeutics for clinical toxoplasmosis is imperative. The first step of novel antibiotic development is to identify chemical compounds showing high efficacy in inhibition of parasite growth using a high throughput screening strategy. As an obligate intracellular pathogen, Toxoplasma can only replicate within host cells, which prohibits the use of optical absorbance measurements as a quick indicator of growth. Presented here is a detailed protocol for a luciferase-based growth assay. As an example, this method is used to calculate the doubling time of wild-type Toxoplasma parasites and measure the efficacy of morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl (LHVS, a cysteine protease-targeting compound) regarding inhibition of parasite intracellular growth. Also described, is a CRISPR-Cas9-based gene deletion protocol in Toxoplasma using 50 bp homologous regions for homology-dependent recombination (HDR). By quantifying the inhibition efficacies of LHVS in wild-type and TgCPL (Toxoplasma cathepsin L-like protease)-deficient parasites, it is shown that LHVS inhibits wild-type parasite growth more efficiently than Δcpl growth, suggesting that TgCPL is a target that LHVS binds to in Toxoplasma. The high sensitivity and easy operation of this luciferase-based growth assay make it suitable for monitoring Toxoplasma proliferation and evaluating drug efficacy in a high throughput manner.
Toxoplasma gondii is a highly successful obligate intracellular parasite that infects approximately one-third of the human population. Its high transmission rate is predominantly due to its diverse routes of transmission, including consumption of undercooked meat, exposure to mammalian reservoirs, and congenital transmission during birth. T. gondii mainly causes opportunistic infections that can lead to severe morbidity and mortality in immunocompromised individuals1,2,3,4,5,6. The antibiotics currently used for treating acute toxoplasmosis are particularly inefficient in treating congenital and latent infections and cause severe reactions in some individuals3,7,8. Thus, an urgent need to identify novel therapeutics exists. Understanding the differences in subcellular processes within Toxoplasma and its host will help to identify potential drug targets. Therefore, efficient and convenient genome manipulation techniques are required to study the roles of individual genes within Toxoplasma. Additionally, Toxoplasma belongs to the phylum Apicomplexa, which includes several other significant human pathogens, such as Plasmodium spp. and Cryptosporidium spp. Hence, Toxoplasma can be used as a model organism to help study basic biology in other apicomplexan parasites.
To identify novel antibiotics against microbial pathogens, high throughput screening of a library of chemical compounds is initially performed to determine their efficacy in the repression of microbial growth. So far, several microplate-based growth assays have been developed for measuring intracellular growth of T. gondii (i.e., radioactive 3H-uracil incorporation-based quantification9, quantitative ELISA-based parasite detection using T. gondii-specific antibodies10,11, reporter protein-based measurement using β-galactosidase or YFP-expressing Toxoplasma strains12,13, and a recently developed high-content imaging assay14).
These individual strategies all have unique advantages; however, certain limitations also restrict their applications. For example, since Toxoplasma can only replicate within nucleated animal cells, autofluorescence and non-specific binding of anti-T. gondii antibodies to host cells cause interference in fluorescence-based measurements. Furthermore, usage of radioactive isotopes requires special safety compliance and potential safety issues. Some of these assays are more suitable for assessing growth at a single timepoint rather than continuous monitoring of growth.
Presented here is a luciferase-based protocol for the quantification of intracellular Toxoplasma growth. In a previous study, the NanoLuc luciferase gene was cloned under the Toxoplasma tubulin promoter, and this luciferase expression construct was transfected into wild-type (RHΔku80Δhxg strain) parasites to create an RHΔku80Δhxg::NLuc strain (referred to as RHΔku80::NLuc hereafter)15. This strain served as the parental strain for intracellular growth determination and gene deletion in this study. Using the RHΔku80::NLuc strain, parasite growth in human foreskin fibroblasts (HFFs) was monitored over a 96 h period post-infection to calculate parasite doubling time.
In addition, the inhibition efficacy of LHVS against parasite growth can be determined by plotting Toxoplasma growth rates against serial LHVS concentrations to identify the IC50 value. Previous literature has reported that TgCPL is a major target of LHVS in parasites and that treatment with LHVS decreases the development of acute and chronic Toxoplasma infections16,17,18,19. Additionally, RHΔku80::NLuc was used as the parental strain for genome modification to generate a TgCPL-deficient strain (RHΔku80Δcpl::NLuc), and the inhibition of LHVS was measured against this mutant. By observing an upshift of IC50 values for LHVS in the TgCPL-deficient parasites compared to the WT strain, it was validated that TgCPL is targeted by LHVS in vivo.
In this protocol, RHΔku80::NLuc is used as the parental strain, which lacks an efficient non-homologous end-joining pathway (NHEJ), thereby facilitating double crossover homology-dependent recombination (HDR)20,21. Additionally, 50 bp homologous regions are flanked at both ends of a drug resistance cassette by PCR. The PCR product serves as a repair template to remove the entire gene locus via HDR using CRISPR-Cas9-based genome editing tools. Such short homologous regions can be easily incorporated into primers, providing a convenient strategy for production of the repair template. This protocol can be modified to perform universal gene deletion and endogenous gene tagging.
For instance, in our most recent publication, three protease genes, TgCPL, TgCPB (Toxoplasma cathepsin B-like protease), and TgSUB1 (Toxoplasma subtilisin-like protease 1), were genetically ablated in TgCRT (Toxoplasma chloroquine-resistance transporter)-deficient parasites using this method15. Additionally, TgAMN (a putative aminopeptidase N [TgAMN, TGGT1_221310]) was endogenously tagged15. The Lourido lab also reported using short homologous regions in the range of 40-43 bp for the introduction of site-directed gene mutation and endogenous gene tagging in the Toxoplasma genome using a similar method22. These successful genome modifications suggest that a 40-50 bp homologous region is sufficient for efficient DNA recombination in the TgKU80-deficient strain, which greatly simplifies genome manipulation in Toxoplasma gondii.
Toxoplasma gondii is categorized in Risk Group 2 and must be handled at a Biosafety Level 2 (BSL-2). The protocol has been reviewed and approved by the Institutional Biosafety Committee at Clemson University.
1. Luciferase-based Toxoplasma growth assay
2. Evaluation of chemical compound inhibition efficacy against Toxoplasma growth
NOTE: Here, evaluation of the inhibition of LHVS in Toxoplasma growth is presented as an example. Eight different concentrations of LHVS are tested, and three technical replicates are performed for each of the three biological replicates for both RHΔku80::NLuc and RHΔku80Δcpl::NLuc strains.
3. CRISPR-Cas9-based gene deletion in Toxoplasma parasites
Figure 1 represents an example of a growth curve for the RHΔku80::NLuc strain and the derived calculation for its doubling time. Generally, the assay is performed in three technical replicates for each of the three biological replicates to account for variations of luciferase activity readings. In order to calculate the normalized fold change of parasite growth, each reading at 24-96 h post-infection was divided by the initial reading at 4 h post-infection, which reflects the starting amount of live parasites in the assay (Figure 1A,B). In terms of determining parasite doubling time, the log2 values of the normalized fold changes of parasite growth were plotted against each timepoint. Next, the plot was subjected to a linear regression function to obtain the slope, which represents doubling time (Figure 1C).
The inhibition efficacies of LHVS in wild-type and Δcpl strains were determined by plotting luciferase activities against eight inhibitor concentrations in Figure 2. It is essential to include infected cells without inhibitor treatment for normalization of raw luciferase activities in the assay. In addition, a mock experiment performed in a clear microplate is required for the assay to ensure that parasites are still in the intracellular stage at the end of the assay period.
In Figure 3, the generation and validation of a sgRNA expression construct targeting TgCPL and the production of a repair template for TgCPL deletion are shown. The 20 bp sgRNA matching to the TgUPRT gene encoded in the original plasmid was mutated to the DNA sequence targeting the TgCPL gene via PCR-based site-directed mutagenesis. To achieve this, the DNA sequences coding for the sgRNAs that recognize different genes were engineered to the forward primer, while the reverse primer was kept unchanged to simplify primer design.
Figure 3A shows a zoomed-in region of the sgRNA DNA sequences targeting the TgUPRT gene in the original template plasmid as well as the primer set used for the generation of the linearized sgRNA expression vector. Figure 3B shows a representative gel picture of the linearized TgCPL-targeting sgRNA expression plasmid. Figure 3C shows the restriction endonuclease digestion of the circularized TgCPL-targeting sgRNA expression plasmid. A M13 reverse primer was used to sequence the incorporated guide RNA within the sgRNA expression vector generated for the specific gene. In Figure 3D, the sequenced DNA region was aligned to the plasmid template for the confirmation of successful mutagenesis. Figure 3E illustrates the start and end regions of the pyrimethamine resistance cassette, showing where the primers can anneal for production of the repair template for TgCPL gene deletion. The repair template was PCR-amplified and loaded into a 1% agarose gel for size verification and gel extraction.
The overall strategy for TgCPL knockout generation and screening is shown in Figure 4. Three sets of primers shown in Figure 4A were used to screen TgCPL-deletion parasites for the correct integration of 5'- and 3'-ARMs and deletion of the TgCPL-coding sequence. As shown in Figure 4B, generally, seven to eight clones are selected for screening initially. The screening usually starts with checking for deletion of the coding sequence for the gene of interest. This is followed by detection of 5' and 3'-ARMs, which helps minimize the total number of clones to be screened. Further verification by immunoblotting displayed in Figure 4C can be completed if an antibody recognizing the target protein is available.
Figure 1: Intracellular growth quantification for Toxoplasma parasites using a luciferase-based method. (A) Raw luciferase activity readings in a spreadsheet software. The readings at 24 h, 48 h, 72 h, and 96 h post-infection were normalized against the initial readings at 4 h post-infection for calculating the fold changes in parasite growth. (B) The normalized data were averaged and plotted. (C) The log2 values of the fold changes were also plotted and subjected to linear regression for determination of the parasite's doubling time. Please click here to view a larger version of this figure.
Figure 2: Inhibition efficacy assessment of LHVS and pyrimethamine using the luciferase-based growth assay. Parasites were inoculated into a 96 well microplate for 4 h to allow for invasion of host cells. Non-invaded parasites were washed away, and the plate was filled with media containing different concentrations of LHVS or pyrimethamine and incubated for an additional 96 h before determination of luciferase activity. The measured luciferase readings for parasites treated with individual inhibitor concentrations were normalized against the signal detected from untreated parasites. The data were plotted in a graphing program, and a regression analysis for IC50 determination was performed. The assay was repeated in three biological replicates with three technical replicates each. Data represent mean ± SEM, n = 3 biological replicates. Please click here to view a larger version of this figure.
Figure 3: Generation of the plasmid construct expressing sgRNA targeting TgCPL and production of a repair template for TgCPL deletion. (A) The original pSAG1-Cas9-sgRNA-UPRT plasmid23 was modified via a site-directed mutagenesis kit for replacement of the sgRNA targeting the TgUPRT gene to TgCPL. The sgRNA coding region is enlarged to show areas to which the primers anneal. After PCR, the mutated plasmid was linearized and loaded into a 1% agarose gel for verification of successful amplification, followed by gel extraction. (B) The gel image of the PCR-amplified linearized sgRNA expression construct. (C) After gel-extraction, the PCR product was circularized and subsequently transformed into E. coli. The clones containing the expected plasmids were screened by restriction endonuclease digestion and DNA sequencing. The band sizes after DNA digestion were 7.2 bp and 2.4 kb. The band generated by nonspecific cleavage from endonucleases is labeled by asterisk. (D) The M13 reverse primer labeled in the figure was used to sequence the mutated guide RNA region within the generated TgCPL-targeting sgRNA expression vector. The sequenced DNA region was aligned to the plasmid template to confirm successful mutagenesis. (E) In this study, 50 bp homologous regions matching to the 5'- and 3'-UTRs of TgCPL were engineered into the primers for amplification of the repair template and flanked at the 5'- and 3'-ends of the pyrimethamine resistance cassette by PCR, respectively. Agarose gel electrophoresis was used to verify the correct size of the PCR product before gel extraction. The expected size of the repair template is ~2.7 kb. Usually, 5-6 µg of repair template can be obtained from 200 µL of PCR reaction. Please click here to view a larger version of this figure.
Figure 4: PCR and immunoblotting confirmation of TgCPL-deficient parasites. (A) A schematic diagram depicting the general strategies of TgCPL-deletion in Toxoplasma and PCR-based screening of the correct TgCPL knockout clones. The primers used for the screening are labeled. (B) PCR and agarose gel electrophoresis were used to select clones containing the correct integration of the pyrimethamine resistance cassette into the TgCPL locus and loss of the TgCPL gene. The genomic DNA of the Δcpl population served as a positive control for 5'- and 3'-ARM detection, while the WT genomic DNA was used for the detection of the TgCPL gene as a positive control. Water was used instead of DNA template in the PCR reactions to serve as a negative control. The expected bands are denoted by arrows, whereas nonspecific PCR amplifications are labeled by asterisks. (C) Clone 1 identified by PCR screening was grown in tissue culture for cell lysate preparation and further immunoblotting analysis to confirm the loss of TgCPL expression in the knockout. TgActin was used as a loading control. Please click here to view a larger version of this figure.
Luciferase: | Endpoint |
Integration time: | 1 s |
Filter Set – Emission: | Full light |
Optics: | Top |
Gain: | 135 |
Read speed: | Normal |
Delay: | 100 ms |
Read height: | 4.5 mm |
Table 1: Microplate reader settings for luciferase activity measurement during luciferase-based Toxoplasma growth assay.
Initial denaturation: | 98 °C for 5 min |
25 cycles of | |
Denaturing: | 98 °C for 5 s |
Annealing: | 60 °C for 15 s |
Extension: | 72 °C for 1 min |
Final extension: | 72 °C for 10 min |
Table 2: Thermocycler settings for generation of sgRNA expression vector.
Sample | Volume (µl) |
PCR product (10-50 ng) | 1 |
2X KLD (kinase, ligase, DpnI) Reaction Buffer | 5 |
10X KLD Enzyme Mix | 1 |
Nuclease-free water | 3 |
Total | 10 |
Table 3: Reaction recipe for circularization of sgRNA expression vector.
Initial denaturation: | 98 °C for 5 min |
35 cycles of | |
Denaturing: | 98 °C for 15 s |
Annealing: | 58 °C for 15 s |
Extension: | 72 °C for 30 s per kb |
Final extension: | 72 °C for 10 min |
Table 4: Thermocycler setting for generation of repair template.
Sample | Volume (µl) |
total Toxoplasma genomic DNA | 1 |
Forward primer (25 µM) | 0.2 |
Reverse primer (25 µM) | 0.2 |
2x PCR master premix | 5 |
Nuclease-free water | 3.6 |
Total | 10 |
Table 5: Colony PCR reaction recipe for screening single Toxoplasma clones.
Initial denaturation: | 98 °C for 5 min |
35 cycles of | |
Denaturing: | 98 °C for 5 s |
Annealing: | 55 – 62 °C for 5 s |
Extension: | 72 °C for 20 s per kb |
Final extension: | 72 °C for 1 min |
Table 6: Thermocycler setting for screening single Toxoplasma clones.
Cytomix buffer | 25 mM HEPES, pH 7.6, 120 mM KCl, 10 mM K2HPO4/KH2PO4, 5 mM MgCl2, 0.015 mM CaCl2, and 2 mM EGTA. |
D10 medium | DMEM 1X (Corning, Cat #: 10-013-CV), 10 mM HEPES, 10% (v/v) Cosmic Calf Serum (Hyclone, Cat #: SH30087.03), 1 mM sodium pyruvate, 4 mM L-glutamine, 100 units/mL of penicillin, and 100 µg/mL of streptomycin. |
Phenol red-free medium | DMEM/ Highly Modified (Hyclone, Cat #: SH30284.02), 10 mM HEPES, 10% (v/v) Cosmic Calf Serum (Hyclone, Cat #: SH30087.03), 1 mM sodium pyruvate, 4 mM L-glutamine, 100 units/mL of penicillin, and 100 µg/mL of streptomycin. |
2X NLuc Buffer | 100 mM MES, pH 6.0, 1mM CDTA, 0.5% Tergitol, 0.05% Mazu DF 204, 150 mM KCl, 1 mM DTT, 35 mM Thiourea. |
Supplementary Table 1: Recipes for buffers.
++This protocol describes a luciferase-based protocol to assess intracellular Toxoplasma growth and evaluate the inhibition efficacy of chemical compounds against parasite growth. Compared to the existing strategies available for measuring intracellular Toxoplasma growth, this method exhibits high sensitivity and specificity. While monitoring parasite growth, a mock assay in a clear 96 well microplate is recommended to confirm that the tested strain does not prematurely lyse host cells before the end of the evaluation period. Otherwise, the luminescence readings will not accurately reflect parasite growth, since Toxoplasma only replicates within host cells.
It has been observed that phenol red dye quickly quenches luciferase activity, which can result in significant differences in the luciferase readings among technical replicates due to a delay in individual well measurements by the plate reader. Therefore, it is optimal to prepare HFFs in phenol red-free medium prior to seeding in the 96 well microplates. Also, in the case of high luciferase activity, cross-well interference may lead to significant variation among neighboring wells exhibiting strong luciferase activity. Hence, it is recommended to place an empty column between each strain.
Specifically, for the RHΔku80::NLuc strain, 1,500 parasites are inoculated into each well for the growth assay. Since the doubling time for WT Toxoplasma parasites is ~6-8 h24, it is expected to see an increase in luciferase activity by 8- to 16-fold at 24 h post-infection. However, certain strains with significant growth defects will only yield a slight increase in luciferase activity. Therefore, if the initial parasite inoculum is low, the inherent variation in luciferase activity will mask the observation of an increase in luminescence over the growth period. Hence, it is recommended to inoculate a higher number of parasites to achieve an accurate fold change for strains with growth deficiencies.
In the protocol, the guide RNA design follows the general rules used for CRISPR-Cas9-based genome modification in mammalian cells25. Currently, many types of software and online platforms provide services for guide RNA design in various organisms, such as CHOPCHOP26, E-CRISP27, and EuPaGDT28. Here, commercial software (Table of Materials) is used to design sgRNA. Compared to the previously mentioned online programs, this software provides a local environment for sgRNA design. It calculates activity and specificity scores for each candidate sgRNA using a previously published algorithm25,29.
Technically, any sgRNA located within a gene of interest that contains a high specificity score can efficiently mediate the cleavage of genomic DNA for downstream homology-dependent recombination. In practice, sgRNA targeting a region close to the start or stop codon is preferred. Genes of interest can be endogenously epitope-tagged using the sgRNA, which generates a double-stranded gap at the end of the gene. Endogenously tagging a gene prior to its deletion will help confirm gene loss via immunoblotting detection in the case that an antibody against the protein of interest is not available. Epitope-tagging of a gene can also help determine the subcellular location of the protein of interest via immunofluorescence microscopy. Furthermore, if the target gene is essential, sgRNA recognizing the start region of the gene can be used for the replacement of its cognate promoter to a tetracycline-responsive promoter to generate a conditional knockout.
Additionally, the protocol describes a technique for gene deletion in Toxoplasma by replacing the TgCPL gene with a pyrimethamine resistance cassette. By using different plasmid templates encoding other drug resistance cassettes, investigators can modify primer sequences to incorporate other antibiotic resistance genes into the repair template via PCR. Furthermore, this protocol can be modified to perform other genome modifications, such as endogenous gene tagging, promoter replacement, and site-directed mutagenesis. It is noteworthy that the homologous regions used in this protocol are only 50 bp in length. A separate study successfully used 40-43 bp homologous DNA sequences to introduce single-nucleotide mutations and gene epitope tagging in Toxoplasma parasites22. Homologous DNA sequences in such short length can be easily incorporated into primers. Although we did not quantitatively evaluate the HDR efficiency for this particular length of homologous region, it seems that a 40-50 bp region is sufficient for efficient DNA recombination in the TgKu80-deficient Toxoplasma strain, as evidenced by the successful genetic manipulation of several genes recently achieved15,22.
During the efficacy determination of chemical compounds, if the prospective drug target gene is essential, a comparison of shifts in IC50 values between the wild-type and knockout strains is not practical. In this scenario, an assay directly measuring the ability of chemical compounds to inhibit recombinant protein activity is required to evaluate efficacy and specificity of the drugs. Recent literature reported the fitness scores of individual genes in Toxoplasma by performing a genome wide CRISPR screen30, which can serve as a guide to help assess the difficulty of generating a straight knockout mutant for the gene of interest.
Taken together, the protocol describes successful completion of a luciferase-based intracellular Toxoplasma growth assay and an evaluation strategy for chemical inhibitors against Toxoplasma growth. Also detailed is a CRISPR-Cas9-based genome editing protocol for gene deletion in Toxoplasma parasites, which has been widely used in the field. Individual labs can modify the described protocol according to experimental needs, such as endogenous gene tagging, switching drug selection markers, and altering the evaluation period for intracellular parasite growth.
The authors have nothing to disclose.
The authors would like to thank Drs. Sibley and Carruthers for sharing pSAG1-Cas9-sgRNA-TgUPRT plasmid and anti-TgCPL and TgActin antibodies. This work was supported by the Clemson Startup fund (to Z.D.), Knights Templar Eye Foundation Pediatric Ophthalmology Career-Starter Research Grant (to Z.D.), a pilot grant of an NIH COBRE grant P20GM109094 (to Z.D.), and NIH R01AI143707 (to Z.D.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Agarose gel extraction kit | New England BioLabs | T1020L | |
BamHI | New England BioLabs | R0316S | |
Biotek Synergy H1 Hybrid Multi-Mode Microplate Reader | BioTek Instuments | ||
BTX Gemini Twin Waveform Electroporation System | Harvard Apparatus | ||
Chemically competent E. coli cells | New England BioLabs | C29871 | |
CloneAmp HiFi PCR premix | Takara Bio | 639298 | |
Coelenterazine h | Prolume | 301-10 hCTZ | |
EcoRV | New England BioLabs | R3195S | |
Phire Tissue Direct PCR Master Mix | Thermo Scientific | F170L | |
Plasmid miniprep kit | Zymo Research | D4054 | |
Q5 Site-Directed Mutagenesis kit | New England BioLabs | E0554S | |
Software | |||
Geneious software for sgRNA design (version: R11) | |||
GraphPad Prism software (8th version) | |||
SnapGene for molecular cloning (version: 4.2.11) |