We describe a protocol to assess heart morphology and function in adult zebrafish using high-frequency echocardiography. The method allows visualization of the heart and subsequent quantification of functional parameters, such as heart rate (HR), cardiac output (CO), fractional area change (FAC), ejection fraction (EF), and blood inflow and outflow velocities.
The zebrafish (Danio rerio) has become a very popular model organism in cardiovascular research, including human cardiac diseases, largely due to its embryonic transparency, genetic tractability, and amenity to rapid, high-throughput studies. However, the loss of transparency limits heart function analysis at the adult stage, which complicates modeling of age-related heart conditions. To overcome such limitations, high-frequency ultrasound echocardiography in zebrafish is emerging as a viable option. Here, we present a detailed protocol to assess cardiac function in adult zebrafish by non-invasive echocardiography using high-frequency ultrasound. The method allows visualization and analysis of zebrafish heart dimension and quantification of important functional parameters, including heart rate, stroke volume, cardiac output, and ejection fraction. In this method, the fish are anesthetized and kept underwater and can be recovered after the procedure. Although high-frequency ultrasound is an expensive technology, the same imaging platform can be used for different species (e.g., murine and zebrafish) by adapting different transducers. Zebrafish echocardiography is a robust method for cardiac phenotyping, useful in the validation and characterization of disease models, particularly late-onset diseases; drug screens; and studies of heart injury, recovery, and regenerative capacity.
The zebrafish (Danio rerio) is a well-established vertebrate model for studies of developmental processes and human diseases1. Zebrafish have high genetic similarity to humans (70%), genetic tractability, high fecundity, and optical transparency during embryonic development, which allows direct visual analysis of organs and tissues, including the heart. Despite having just one atrium and one ventricle, the zebrafish heart (Figure 1) is physiologically similar to mammalian four-chambered hearts. Importantly, the zebrafish heart rate, electrocardiogram morphology, and action potential shape resemble those of humans more than murine species2. These features have made zebrafish an excellent model for cardiovascular research and have provided major insights into cardiac development3,4, regeneration5, and pathologic conditions1,3,4, including arteriosclerosis, cardiomyopathies, arrhythmias, congenital heart diseases, and amyloid light chain cardiotoxicity1,4,6. Assessment of cardiac function has been possible during the embryonic stage (1-days post fertilization) through direct video analysis using high-speed video microscopy7,8. However, zebrafish lose their transparency beyond the embryonic stage, limiting functional evaluations of normal mature hearts and late-onset heart conditions. To overcome this limitation, echocardiography has been successfully employed as a high-resolution, real-time, noninvasive imaging alternative to evaluate adult zebrafish heart function9,10,11,12,13,14,15.
In zebrafish, the heart is located ventrally in the thoracic cavity immediately posterior to the gills with the atrium located dorsal to the ventricle. The atrium collects venous blood from the sinus venosus and transfers it to the ventricle where it is further pumped to the bulbus arteriosus (Figure 1). Here, we describe a physiological, underwater, protocol to assess cardiac function in adult zebrafish by non-invasive echocardiography using a linear array ultrasound probe with a center frequency of 50 MHz for B-mode imaging at a resolution of 30 µm. Since ultrasound waves can easily travel through water, keeping close proximity between the fish and the scanning probe underwater provides enough contact surface for heart detection with no need for ultrasound gel and is overall less stressful for the fish. Although alternative zebrafish echocardiography systems were reported by several authors9,12,13, here we present the general and most commonly used setup that applies to high-frequency ultrasound in animals.
The method allows high resolution imaging of the adult zebrafish heart, tracing of cardiac structures, and quantification of peak-velocities from Doppler blood flow measurements. We show reliable in vivo quantification of important systolic and diastolic parameters, such as ejection fraction (EF), fractional area change (FAC), ventricular blood inflow and outflow velocities, heart rate (HR), and cardiac output (CO). We contribute to establishing a reliable range of normal healthy adult zebrafish cardiac functional and dimensional parameters to allow a more precise evaluation of pathologic states. Overall, we provide a robust method to assess cardiac function in zebrafish, which has proven extremely useful in establishing and validating zebrafish heart disease models6,16, heart injury and recovery10,13, and regeneration11,12, and can be further used to evaluate potential drugs.
All procedures involving zebrafish were approved by our Institutional Animal Care and Use Committee and are in compliance with the USDA Animal Welfare Act.
1. Experimental set-up
2. Handling the Fish
NOTE: Zebrafish used in this study were adult, 11-month-old males of the wild-type strain AB/Tuebingen (AB/TU). Zebrafish were maintained in a stand-alone flow-through aquarium system at 28 °C in a constant light cycle set as 14 h light/10 h dark. Zebrafish were fed twice daily with brine shrimp (Artemia nauplii) and dry food flakes.
3. Image acquisition
NOTE: See Table of Materials for imaging system and image analysis software.
4. Fish recovery
5. Image analysis
The described protocol allows for measurement of important cardiac dimensional and functional parameters, analogous to the technique used in human and animal echocardiography. The B-Mode images allow for tracing of ventricular inner wall in systole and diastole (Figure 5) and obtaining of dimensional data, such as chamber and wall dimensions, and functional data, such as heart rate, stroke volume, and cardiac output as well as parameters of ventricular systolic function, such as fractional area change and ejection fraction (Table 1). Measurements at the level of the atrioventricular valve using color Doppler Mode images also provide ventricular inflow and outflow blood velocities (velocity at which blood fills and exits the ventricle, respectively) (Figure 3 and Table 1).
The parameters obtained in this study were comparable with the ones reported in previous studies using similar experimental conditions6,16,17 (Table 1), further demonstrating the reproducibility of the method. Overall, we show that using this detailed protocol one can effectively and consistently assess zebrafish cardiac function, which is critical when comparing different cardiac phenotypes during a study.
Figure 1: Illustration of adult zebrafish heart. Blood flow circulation is represented by arrows: the blood flows from the sinus venosus to the atrium and is further transferred to the ventricle, where it is pumped to the bulbus arteriosus. Please click here to view a larger version of this figure.
Figure 2: Fish-imaging chamber. (A) To prepare a fish-imaging "chamber", a sponge with an incision towards one end in a vertical orientation is placed in a glass container. (B) The glass container is then firmly taped on the inclined imaging platform. (C) The transducer is mounted on the manipulator and placed parallel to the incision for correct imaging positioning (the transducer notch is pointing towards the operator). Please click here to view a larger version of this figure.
Figure 3: Atrioventricular inflow (A) and outflow (B) in Color Doppler mode and corresponding Pulsed Wave Doppler to assess velocities of the respective ventricular diastolic wave peaks (C) and ventricular outflow (D). Please click here to view a larger version of this figure.
Figure 4: Image analysis. After image processing (to achieve desired contrast and brightness of the image), measurements can be performed in the PW Doppler mode (left) and B-mode (right) images. To trace the LV wall in the B-mode image, select Cardiac Package from the drop-down menu, go to PSLAX, and select LV Trace. To measure peak velocities in the PW Doppler mode image, select Cardiac Package from the drop-down menu. To measure the ventricular blood inflow velocity, select the MV Flow option and select E or A for early diastole and late diastole, respectively. For determination of the outflow blood velocity, select AoV Flow and AV peak velocity. Please click here to view a larger version of this figure.
Figure 5: B-mode images. (A) B-Mode image of the ventricle (V) in diastole, filled with blood coming from the atrium (A). (B) B-Mode image of the ventricle in systole, ejecting blood through the bulbus arteriosus (B, green tracing). Please click here to view a larger version of this figure.
Figure 6: Pulse Wave Doppler image. A heart rate value can be generated by tracing 3 consecutive aortic flow peaks. The aortic flow peaks can be displayed by selecting the heart rate button in measurements tab in the analysis software. Please click here to view a larger version of this figure.
Parameters, units ± sd | This study | Wang, L. et al, 2017; Lee, L. et al, 2016 & Mishra, S. et al, 2019 | Comments/Description |
Heart rate (HR), bpm | 133 ± 7 | 118 ± 14 – 162 ± 32 | Wild-types AB/ABTU males and females between 3-12 months anesthetized in tricaine 0.2 mg/mL |
Fractional area change (FAC) | 0.38 ± 0.03 | 0.29 ± 0.07 – 0.39 ± 0.05 | |
Ejection fraction (EF), [%] | 42 ± 7 | 34 ± 0.04 – 48 ± 0.03 | |
Stroke volume (SV), µL | 0.21 ± 0.01 | 0.18 ± 0.06 – 0.28 ± 0.08 | |
Cardiac output (CO), µL min-1 | 27.3 ± 1.69 | 19 ± 9.5 – 36.1 ± 7.8 | |
E peak velocity (early ventricular inflow), mm/s | 30 ± 6.8 | 25 ± 7 – 51 ± 16 | |
A peak velocity (late ventricular inflow), mm/s | 152 ± 32 | 144 ± 36 – 288 ± 54 | |
Ventricular outflow, mm/s | 86.6 ± 19 | n/a |
Table 1: Echocardiographic parameters in adult zebrafish. Values obtained for the cardiac function parameters evaluated in the current study for adult male or female zebrafish between 3 and 12 months anesthetized in a 0.2 mg/mL tricaine solution. A range of the values obtained for the same parameters in previous studies6,16,17 performed in similar conditions is presented for validation and to help standardize the method.
We describe a systematic method for echocardiographic imaging and assessment of cardiac function in adult zebrafish. Echocardiography is the only available non-invasive and most robust method for live adult fish cardiac imaging and functional analysis, and it is becoming increasingly popular in zebrafish cardiovascular research. The amount of time needed is short and allows for high-throughput and longitudinal studies. However, there is considerable variation in the methodology employed and data analysis. Standardization of zebrafish echocardiography is very difficult when so many variables can influence the outcoming parameters. When conducting experimental studies, one should consider conditions that can produce variability, including anesthesia, body weight, age, sex, and background strain. Wang, L et al.16 assessed the variability introduced by these factors and compiled the available data on zebrafish cardiac function in order to help standardize the method. Their study is a very useful resource to design experimental studies involving zebrafish echocardiographic assessment. Based on the information provided by Wang, L et al.16 and references within and our own observations6, we provide an outline of critical steps and conditions we considered important for protocol optimization and reproducibility:
Choice of specimen: Previous studies suggest that while systolic function parameters (EF, FAC) are not significantly affected by sex differences, diastolic function (namely peak wave E/A ratio) can be considerably lower in females older than 6 months. It was also observed that ventricular areas and volumes significantly increase with fish age (3 months and older) and are considerably higher in females due to their higher body weight and size. Indexing diastolic volumes to body-mass index (BMI) and body surface area (BSA) can help abolish differences between age-matched females and males, and indexing to BSA and weight can help overcome age related diastolic volume differences16. There were also reports of different diastolic functions between fish with different background strains16. Overall, when choosing experimental design, it is advisable to use age- and strain-matched controls and avoid mixing different sexes. Using males is recommended, as image quality was lower in gravid females.
Scanning position: In this setup two scanning positions are possible: longitudinal axis and short axis. We found that in short axis mode it was very hard to identify the cardiac chambers. Therefore, we used only longitudinal axis and recommend the latter for delineation of the cardiac chambers in B-mode and derivation of ventricular size and function.
Anesthesia: Adequate sedation is critical to avoid significant bradycardia during measurement. Heart rate will affect cardiac functional measurement, compromising the accuracy of the study. Tricaine is the most common anesthetic agent and a dose of 0.2 mg/mL was found to provide adequate sedation. However, measurement time is critical since heart rate starts to decrease after 3-4 min under sedation16. To avoid introducing variability, it is critical to keep measurements under 3 min.
Critical parameters: Heart rate can be considered as a critical parameter when aiming for consistency and accuracy. Heart rate should be comparable between experimental groups tested and within the range of values reported for the conditions used. We found that a range of 118 ± 14 to 162 ± 32 bpm can represent the normal values for wild type zebrafish 3-12 months old adults anesthetized with 0.2mg/mL of tricaine for less than 3 min.
Result accuracy: To ensure accuracy, measurements should be taken over a minimum of 3 cardiac cycles. To obtain more accurate manual image tracings, the analysis should be done in a blinded manner.
Besides choosing the most appropriate conditions, several aspects are critical to ensure accurate measurement. Ideally, conditions should be kept as close to the normal fish physiologic state as possible. Performing the scan under water has the advantage of keeping the fish in their natural environment and close to normal conditions for gas exchange, water composition, hydrostatic pressure, and temperature. These are clear advantages over previous studies, where during the scanning fish are placed in a wet sponge exposed to room air and conductivity is enabled by ultrasound gel instead of water9,10. Underwater scanning also allows for recovery of the fish after the procedure, provided that the time between anesthesia and recovery is kept under 3 min and the fish is returned to recovery water immediately after measurement. To ensure the procedure is performed as quickly and effectively as possible, a considerable amount of time spent on training is advisable before performing experiments.
Echocardiography is a very well established method to evaluate cardiac function in clinical practice as well as in murine (or other mammalians) animal models. However, unlike murine or human echocardiography, performing fish ultrasound underwater does not allow connection of the specimen to the electrodes. Therefore, direct measurement of heart and respiratory rates is not possible. In that case, heart rate can be measured by counting the beats per min in a 10 or 15 min interval or by manually tracing 3 consecutive aortic flow peaks (Figure 6). Heart rate also affects determination of other parameters, such as cardiac output, that have to be calculated manually once parameters such as stroke volume have been obtained through ventricular inner wall tracing. Another aspect to consider is that fish heart morphology is quite different from mammals. In the two-chambered zebrafish heart, ventricular filling is mostly determined by atrial contraction, and fish typically present a much lower early to late ventricular filling ratio when compared to mammals18. This explains the different profile obtained by pulse wave Doppler in A and E peaks between zebrafish and healthy mammalian hearts.
Echocardiography enables a thorough characterization of the fish cardiac profile and quantification of multiple functional parameters. The values obtained for ejection fraction, fractional area change, blood inflow and outflow velocities, heart rate, and cardiac output are in the range reported by previous studies (Table 1), highlighting the reproducibility of the method. Taken together, our data shows that high-frequency ultrasound echocardiography is a robust and reproducible method to measure zebrafish cardiac morphology and function when evaluating disease models or drug testing.
The authors have nothing to disclose.
We thank Fred Roberts' technical support and revision of the manuscript.
Double sided tape | |||
Fish net | |||
Glass container – 100 inch high | |||
High frequency transducer | Fujifilm/VisualSonics | MX700 | Band width 29-71 MHz, Centre transmit 50 MHz, Axial resolution 30 µm |
Plastic teaspoon | |||
Scalpel or scissors | |||
Small fish tanks | |||
Sponge (kitchen sponge) | |||
Transfer pipets (graduated 3 mL) | Samco Scientific | 212 | |
Tricaine (MS-222) | Sigma-Aldrich | A5040 | |
Vevo 3100 Imaging system and imaging station | Fujifilm/VisualSonics | ||
Vevo LAB sofware v 1.7.1 | Fujifilm/VisualSonics |