This protocol describes laser capture microdissection for the isolation of cartilage and bone from fresh frozen sections of the mouse embryo. Cartilage and bone can be rapidly visualized by cresyl violet staining and collected precisely to yield high quality RNA for transcriptomic analysis.
Laser capture microdissection (LCM) is a powerful tool to isolate specific cell types or regions of interest from heterogeneous tissues. The cellular and molecular complexity of skeletal elements increases with development. Tissue heterogeneity, such as at the interface of cartilaginous and osseous elements with each other or with surrounding tissues, is one obstacle to the study of developing cartilage and bone. Our protocol provides a rapid method of tissue processing and isolation of cartilage and bone that yields high quality RNA for gene expression analysis. Fresh frozen tissues of mouse embryos are sectioned and brief cresyl violet staining is used to visualize cartilage and bone with colors distinct from surrounding tissues. Slides are then rapidly dehydrated, and cartilage and bone are isolated subsequently by LCM. The minimization of exposure to aqueous solutions during this process maintains RNA integrity. Mouse Meckel’s cartilage and mandibular bone at E16.5 were successfully collected and gene expression analysis showed differential expression of marker genes for osteoblasts, osteocytes, osteoclasts, and chondrocytes. High quality RNA was also isolated from a range of tissues and embryonic ages. This protocol details sample preparation for LCM including cryoembedding, sectioning, staining and dehydrating fresh frozen tissues, and precise isolation of cartilage and bone by LCM resulting in high quality RNA for transcriptomic analysis.
The musculoskeletal system is a multicomponent system composed of muscle, connective tissue, tendon, ligament, cartilage, and bone, innervated by nerves and vascularized by blood vessels1. The skeletal tissues develop with increasing cellular heterogeneity and structural complexity. Cartilage and bone develop from the same osteochondroprogenitor lineage and are highly related. Embryonic cartilage and bone develop in association with muscles, nerves, blood vessels, and undifferentiated mesenchyme. Cartilage may also be surrounded by bone, such as Meckel’s cartilage and condylar cartilage within the mandibular bone. These tissues are anatomically associated and interact with each other through extracellular signals during development. In the study of gene expression in the development of cartilage and bone, one obstacle is the heterogeneity of skeletal structures composed of multiple tissue types. Precise isolation of the specific tissue of interest is key for successful transcriptional analysis.
Laser capture microdissection (LCM) is a powerful tool to isolate cell types or regions of interest within heterogeneous tissues, and is reproducible and is sensitive to the single cell level2. It can precisely target and capture cells of interest for a wide range of downstream assays in transcriptomics, genomics, and proteomics3,4. The quality of the isolated RNA, DNA, or protein can be assessed with a bioanalyzer or equivalent platform. For example, RNA quality is indicated by the RNA integrity number (RIN)5.
Here, we provide a protocol for the rapid staining and isolation of cartilage and bone by LCM from fresh frozen tissues. We use the mouse embryo to demonstrate that this protocol yields high quality RNA for subsequent transcriptomic analysis, such as RNA sequencing (RNA-seq).
Tissues from mice were obtained in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and study protocols were approved by the Institutional Animal Care and Use Committee at the Icahn School of Medicine at Mount Sinai.
1. Preparation of Fresh Frozen Specimen
2. Cryosectioning for Laser Capture Microdissection
3. Sample Preparation for Laser Capture Microdissection
4. Laser Capture Microdissection
NOTE: Wear powder free nitrile gloves while performing LCM.
5. Lysis of Microdissected Tissues and RNA Isolation
Coronal sections of fresh frozen mouse tissues at E16.5 were used to demonstrate the isolation and collection of Meckel's cartilage (MC), condylar cartilage, and mandibular bone by LCM. Mouse embryos at E16.5 were dissected and embedded in cryogenic molds with OCT compound. Samples in molds were rapidly frozen in a dry ice and methyl-2-butane bath and stored at -80 °C.
To demonstrate cresyl violet staining of cartilage and bone, cryosectioning in the coronal plane was performed and samples were collected on microscope slides. Sections were washed, stained, and dehydrated following the protocol above (step 3.2–3.4). Slides were air dried and mounted with permanent mounting medium. All cartilages examined were stained magenta (MC, condylar cartilage, nasal septum cartilage, costal cartilage, cartilage primordium of presphenoid bone, cartilage primordia of radius and ulna) and all mineralized tissues were stained brown or black (Figure 1A–E). Both cartilage and bone were easily distinguished from other tissues at multiple anatomical sites.
For LCM, heads of embryos at E16.5 were sectioned in the coronal plane on PEN membrane slides at a thickness of 12 μm, and 6–8 consecutive sections were collected per slide and stored at -80 °C. OCT was removed and sections were stained with cresyl violet and dehydrated following the protocol described above (step 3.2–3.4). MC, condylar cartilage, and the mandibular bone regions were selected and isolated by LCM (Figure 2). The selected regions dropped into the lysis buffer in the cap of the collection tube. To obtain sufficient RNA for sequencing, we pooled 10 regions of MC, 10 regions of condylar cartilage or 4 regions of mandibular bone into each collection tube as one sample, respectively.
RNA was extracted using an RNA isolation kit following the manufacturer's instructions. Total RNA was analyzed using a bioanalyzer (Figure 3A–B). To test the effect of cresyl violet staining on the quality of RNA, we compared RNA from mandibular bone samples stained with cresyl violet and samples without staining (mineralized tissue is visible without staining, but cresyl violet staining enhances the visibility to distinguish bone from surrounding tissues). No significant difference in RNA integrity was observed between stained samples (n = 4) and samples without staining (n = 4), indicating the quick cresyl violet staining in this protocol has insignificant effect on RNA quality (P = 0.858, two-tailed Welch's t-test, Figure 3C). We used our protocol for LCM of various tissues at different developmental stages and RINs were measured, indicating high RNA quality (Figure 3D). Average yields of RNA from MC, condylar cartilage, and mandibular bone were 7.50 ± 1.45 ng, 12.55 ± 2.75 ng, and 33.02 ± 7.63 ng (Figure 3E) and the yield/area was 19.73 ± 3.82 ng/mm2, 26.70 ± 5.84 ng/mm2, and 17.23 ± 3.98 ng/mm2, respectively (Figure 3F), without significant difference among tissues (MC versus condylar cartilage, P = 0.383; condylar cartilage versus mandibular bone, P = 0.260; MC versus mandibular bone, P = 0.674).
Libraries were prepared and sequenced as previously described6,7. A representative cDNA size was approximately 500 bp (Figure 4A). RNA-seq data was analyzed with MultiQC8. We analyzed RNA-seq data from 18 LCM samples (MC1-6, Meckel's cartilage; C1-6, condylar cartilage; M1-6, mandibular bone). The mean quality values across each base position in the reads were generated by FastQC, indicating very good quality calls (Figure 4B). Read alignment was analyzed with Picard (Figure 4C). The reads showed high aligned percentages and the average percentage of aligned reads was 75%. Gene coverage was analyzed with Picard (Figure 4D), which indicated a good representation along the transcript from the 5' to the 3' end.
Differential gene expression analysis was performed6,7. There were 4,006 genes significantly differentially expressed (P < 0.05) between the mandibular bone and MC (Figure 5A). Genes specific to osteoblasts or osteocytes (Col1a19, Col1a210, Dkk111, Dmp112, Dstn13, Runx214, Sp715, and Sparc16) were more highly expressed in the mandibular bone compared to MC, while chondrocyte-specific genes (Acan17, Col2a118, Col9a119, Col9a220, Col9a321, Comp22, Lect123, and Sox524) were more highly expressed in MC compared to the mandibular bone (Figure 5B and Table 1). In addition, osteoclast markers such as Acp525, Csf1r26, Ctsk27, Itgb328, and Oscar29 were also identified as more highly expressed in the mandibular bone compared to MC (Figure 5B and Table 1), indicating successful isolation of targeted tissues.
Figure 1: Representative cresyl violet staining of cartilage and bone in coronal sections of the mouse embryo at E16.5. (A) Meckel's cartilage and hemimandible. (B) Meckel's cartilage, condylar cartilage, and hemimandible. (C) Nasal septum and maxillae. (D) Cartilage primordium of presphenoid bone and palatine bone. (E) Cartilage primordium of radius, cartilage primordium of ulna, and costal cartilage. C = condylar cartilage; CC = costal cartilage; CP = cartilage primordium of presphenoid bone; M = hemimandible; MC = Meckel's cartilage; MX = maxilla; NS = nasal septum; PL = palatine bone; R = cartilage primordium of radius; U = cartilage primordium of ulna. Scale bar = 200 µm. Please click here to view a larger version of this figure.
Figure 2: Representative regions isolated by LCM and collected for RNA-seq. (A–C) Representative stained MC (A), condylar cartilage (B), and hemimandible with MC already isolated (C) in cryosection before LCM. (D–F) The regions in A, B, and C after targeted tissues were isolated by LCM. Scale bar = 200 µm. Please click here to view a larger version of this figure.
Figure 3: RNA quality and quantity of LCM samples. (A–B) Representative electropherogram (A) and the associated gel image (B) from a bioanalyzer for a mandibular bone sample. (C) RINs of total RNA from mandibular bone samples stained with cresyl violet (n = 4) or without staining (n = 4). (D) RINs of total RNA from different tissues isolated by LCM. Meckel's cartilage at E16.5 (n = 6); Condylar cartilage at E16.5 (n = 6); Mandibular bone at E16.5 (n = 6); Nasal septum cartilage at E14.5 (n = 6); Brain at E14.5 (n = 6); Brain at E16.5 (n = 7); Brain at E18.5 (n = 4). (E) Yield of total RNA from three tissues. Each MC or condylar cartilage sample was a pool of 10 microdissected regions of cartilage and each sample of mandibular bone was a pool of 4 microdissected regions of hemimandible. (F) The yield per unit area (ng/mm2) in each tissue. Data are mean ± s.e.m. Please click here to view a larger version of this figure.
Figure 4: The quality of libraries and RNA-seq data generated from LCM samples. (A) Representative cDNA sizes of a library from a mandibular bone sample determined by a bioanalyzer. (B–D) Quality control analysis of RNA-seq from 18 LCM samples (MC1-6, Meckel's cartilage; C1-6, condylar cartilage; M1-6, mandibular bone) by MultiQC. (B) The mean quality values across each base position in the reads were generated by FastQC. The background of the graph divides the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality (red). (C) Alignment of reads was analyzed by Picard. The summary is shown as the percentages of aligned reads. (D) Normalized gene coverage analyzed with Picard. The plot indicates the relative average coverage along the transcript from 5' end (left) to 3' end (right). Please click here to view a larger version of this figure.
Figure 5: Differential expression analysis of RNA-seq data from mandibular bone and MC isolated by LCM. (A) Hierarchical clustering of 4,006 genes significantly differentially expressed (P < 0.05) between the mandibular bone and MC. Three biological replicates were used for each tissue. M1-3, mandibular bone; MC1-3, MC. (B) Volcano plot showing fold changes and P-values of differentially expressed genes between mandibular bone and MC. Examples of highly differentially expressed cell-specific genes are shown: osteoblast and osteocyte markers in blue, osteoclast markers in green, and chondrocyte markers in red. Please click here to view a larger version of this figure.
Gene | Cell type | log2FoldChange | Average Expression | Adjusted P Value |
Col1a1 | Osteoblast/Osteocyte | 2.64 | 12.94 | 2.22E-05 |
Col1a2 | Osteoblast/Osteocyte | 3.41 | 12.87 | 8.27E-07 |
Dkk1 | Osteoblast/Osteocyte | 7.59 | 2.01 | 5.21E-03 |
Dmp1 | Osteoblast/Osteocyte | 9.73 | 3.42 | 3.19E-04 |
Dstn | Osteoblast/Osteocyte | 2.51 | 6.87 | 5.73E-07 |
Runx2 | Osteoblast/Osteocyte | 1.24 | 8.62 | 4.08E-02 |
Sp7 | Osteoblast/Osteocyte | 2.24 | 6.95 | 5.81E-03 |
Sparc | Osteoblast/Osteocyte | 3.40 | 12.26 | 5.56E-09 |
Acp5 | Osteoclast | 3.38 | 5.74 | 6.46E-06 |
Csf1r | Osteoclast | 2.01 | 5.80 | 1.17E-04 |
Ctsk | Osteoclast | 3.19 | 7.56 | 5.73E-07 |
Itgb3 | Osteoclast | 2.88 | 5.37 | 2.43E-04 |
Oscar | Osteoclast | 3.41 | 2.67 | 1.63E-04 |
Acan | Chondrocyte | -5.23 | 5.01 | 2.76E-04 |
Col2a1 | Chondrocyte | -3.61 | 9.47 | 3.29E-03 |
Col9a1 | Chondrocyte | -7.01 | 3.58 | 5.51E-03 |
Col9a2 | Chondrocyte | -5.40 | 3.76 | 2.60E-03 |
Col9a3 | Chondrocyte | -6.63 | 3.80 | 2.90E-02 |
Comp | Chondrocyte | -5.86 | 1.54 | 7.51E-03 |
Lect1 | Chondrocyte | -7.37 | 1.34 | 2.35E-02 |
Sox5 | Chondrocyte | -2.88 | 4.43 | 6.06E-04 |
Table 1: Differential expression of known genes in various cell types of bone and cartilage (mandibular bone versus MC).
LCM enables the isolation of enriched or homogenous cell populations from heterogeneous tissues. Its advantages include rapid and precise capture of cells in their in vivo context, while potential disadvantages include it being time consuming, expensive, and limited by the need for the user to recognize distinct subpopulations within a specified sample30. This protocol provides details of LCM of mouse embryonic cartilage and bone, highlighting the use of cresyl violet staining in a rapid procedure to visualize cartilage and bone for precise tissue collection while maintaining high RNA integrity for subsequent analysis by RNA-seq. One limitation of this protocol is that the LCM system used here is not able to directly cut across mineralized tissues (e.g., the mandibular tissue in black in Figure 2C); as a result, the whole bone area needs to be dissected. Notably, the microdissected ossified regions isolated by LCM are not homogeneous, and include at least the subpopulations of osteoblasts, osteocytes, and osteoclasts (Table 1). Nevertheless, the enrichment by LCM is valuable as our previous study has shown that transcriptional changes in specific subpopulations such as osteoclasts in the microdissected bone tissue can still be detected by RNA-seq6.
For gene expression analysis, we have optimized the sample preparation and LCM procedure for high RNA quality and yield. Our protocol starts with fresh frozen tissues. Fresh frozen tissue sections allow for excellent quantity and quality of extracted RNA3, as mRNA is sensitive to standard methods of fixation31. RNA is quickly degraded by RNase contamination, and maintenance of an RNase-free environment throughout sample preparation, LCM, and RNA isolation is critical for successful application. Exposure to water during section processing is detrimental to RNA quality31,32. Our protocol limits such exposure, with the highest level of aqueous exposure being 50% during cresyl violet staining. We have tested that a quick staining (30 s) with 0.1% cresyl violet in 50% ethanol gives a distinguishable color to cartilage and does not lower the RNA integrity for downstream analysis such as low input RNA-seq (Figure 3C and Figure 4). The yield/area (ng/mm2) is approximately 20 ng/mm2 (Figure 3F), similar to or higher than previous optimized methods33. According to the cell densities in MC and mandibular bone6, we estimate that with this protocol the average yield from one cell is approximately 5 pg RNA per cell, and 1–5 ng of total RNA can be extracted from 200–1,000 cells, which can be used for low-input RNA-seq6,7,33. This yield efficiency is much higher than established LCM methods34, and also superior or similar to recent optimized protocols33,35.
The ability to distinguish different cell types in histological sections is essential for precise collection of specific tissues of interest. Cresyl violet is a hydrophilic, basic stain that binds to negatively charged nucleic acids36. This property makes it useful for counterstaining with cell-type selectivity37, and it is a standard histological stain for neurons38. Cresyl violet has been used in LCM for a variety of tissues, providing good tissue morphology and high RNA quality33,36,39,40. Compared with other staining methods, cresyl violet staining provides cytoplasmic and nuclear details, and a low RNA degradation rate32. We demonstrate here that cresyl violet staining is an easy and quick method to visualize cartilage and bone and that tissue stained with this method conserves high RNA integrity. Xylene treatment is commonly used for dehydration of the tissues before LCM35,36,41,42. We use xylene to enhance the visualization of tissue morphology35 which is essential to distinguish targeted tissues, especially on PEN membrane slides that are not as optically clear as plain glass slides. We found no significant occurrence of section loss from PEN slides during staining and washing steps, even with agitation to remove OCT.
Microdroplet or microfluidics-based single-cell RNA-seq (scRNA-seq) is a high-throughput method to analyze transcriptomes of tissues with heterogeneous cell types and has begun to be used in skeletal biology43. In contrast to LCM, scRNA-seq involves enzymatic and/or mechanical disaggregation of tissue into single cells. Most protocols for single cell preparation require tissues to be incubated at room temperature or 37 °C for extended periods, which alters the transcriptome44,45. In addition, isolation of single cells in cartilage and bone may be physically limited by skeletal element complexity of trabecularization and mineralization. It is still a technical challenge to isolate a sufficient number of viable cells from skeletal tissues that are accurately representative of the cellular diversity of tissues in vivo, and incomplete dissociation of the cells may cause bias in the detection of cell types43. While scRNA-seq allows identification of distinct cell types, the sequencing depth is low, and typical sequencing approaches capture 3’ transcript ends and do not allow alternative splicing analysis. Bulk RNA-seq of LCM-derived tissue homogenizes cell differences, but allows comprehensive transcript detection and alternative splicing analysis. LCM is therefore especially useful for skeletal tissues that are not easily separable from surrounding tissues and internally complex, and fresh frozen preparation of the tissue can preserve both transcriptional profiles and RNA integrity for transcriptional analysis. Another weakness of scRNA-seq is that after single cell preparation, the spatial information of the cells is lost. A combination of LCM and scRNA-seq has been developed to permit the study of the transcriptome of a small sample from defined geographical locations (Geo-seq)46, which is another approach of utilizing LCM to study regionalized gene expression.
In summary, this protocol provides details of optimized LCM of cartilage and bone, highlighting the use of cresyl violet staining in a rapid procedure to visualize cartilage and bone for precise tissue collection while maintaining high RNA integrity for subsequent analysis by RNA-seq. This protocol has been used successfully for LCM of cartilage and bone at different developmental stages for gene expression analysis6,7, and also can be used for other tissues.
The authors have nothing to disclose.
This work was supported by the National Institute of Dental and Craniofacial Research (R01DE022988) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P01HD078233). The authors thank the Biorepository and Pathology Core for access to the Leica LMD 6500 platform at the Icahn School of Medicine at Mount Sinai.
2-Methylbutane | ThermoFisher Scientific | O3551-4 | |
Bioanalyzer | Agilent | G2939BA | |
Centrifuge tube | ThermoFisher Scientific | 339653 | Conical sterile polypropylene centrifuge tubes, 50 mL |
Cresyl violet acetate | Sigma-Aldrich | C5042 | |
Cryostat | Leica Biosystems | CM3050 S | |
Delicate task wiper | ThermoFisher Scientific | 06-666 | |
Disposable embedding mold | ThermoFisher Scientific | 1220 | |
Distilled water | Invitrogen | 10977-015 | DNase/RNase-Free |
Ethanol, absolute (200 proof) | ThermoFisher Scientific | BP2818 | Molecular biology grade |
Glass PEN membrane slide | Leica Microsystems | 11505158 | |
LCM system | Leica Microsystems | Leica LMD6500 | |
Microscope cover glass | ThermoFisher Scientific | 12-545FP | |
Microscope slides | ThermoFisher Scientific | 12-550-15 | |
OCT compound | Electron Microscopy Sciences | 102094-106 | |
PCR tube with flat cap, 0.5 mL | Axygen | PCR-05-C | LCM collection tubes |
Permanent mounting medium | Vector Laboratories | H-5000 | |
RNA isolation kit | ThermoFisher Scientific | KIT0204 | |
RNase decontamination agent | Sigma-Aldrich | R2020 | RNase decontamination agent for cleaning surfaces |
Xylene | Sigma-Aldrich | 214736 |