Here, we present an enhanced yeast one-hybrid screening protocol to identify the transcription factors (TFs) that can bind to a human DNA region of interest. This method uses a high-throughput screening pipeline that can interrogate the binding of >1,000 TFs in a single experiment.
Identifying the sets of transcription factors (TFs) that regulate each human gene is a daunting task that requires integrating numerous experimental and computational approaches. One such method is the yeast one-hybrid (Y1H) assay, in which interactions between TFs and DNA regions are tested in the milieu of the yeast nucleus using reporter genes. Y1H assays involve two components: a ‘DNA-bait’ (e.g., promoters, enhancers, silencers, etc.) and a ‘TF-prey,’ which can be screened for reporter gene activation. Most published protocols for performing Y1H screens are based on transforming TF-prey libraries or arrays into DNA-bait yeast strains. Here, we describe a pipeline, called enhanced Y1H (eY1H) assays, where TF-DNA interactions are interrogated by mating DNA-bait strains with an arrayed collection of TF-prey strains using a high density array (HDA) robotic platform that allows screening in a 1,536 colony format. This allows for a dramatic increase in throughput (60 DNA-bait sequences against >1,000 TFs takes two weeks per researcher) and reproducibility. We illustrate the different types of expected results by testing human promoter sequences against an array of 1,086 human TFs, as well as examples of issues that can arise during screens and how to troubleshoot them.
A central problem in the biomedical field is determining the mechanisms by which each human gene is regulated. Transcription is the first step in controlling gene expression levels, and it is regulated by sets of transcription factors (TFs) that are unique to each gene. Given that humans encode for >1,500 TFs1,2, identifying the complete set of TFs that control the expression of each gene remains an open challenge.
Two types of methods can be used to map TF-DNA interactions: TF-centered and DNA-centered methods3 (Figure 1A). In TF-centered methods, a TF of interest is probed for binding to genomic DNA regions or to determine its DNA binding specificity. These methods include chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing, protein binding microarrays, and SELEX4,5,6. In DNA-centered methods, a DNA sequence of interest is probed to determine the set of TFs that bind to the DNA sequence. The most widely applied of such methods is yeast one-hybrid (Y1H) assays, in which interactions between TFs and DNA regions are tested in the milieu of the yeast nucleus using reporter genes7,8,9.
Y1H assays involve two components: a ‘DNA-bait’ (e.g., promoters, enhancers, silencers, etc.) and a ‘TF-prey,’ which can be screened for reporter gene activation9,10 (Figure 1B). The DNA-bait is cloned upstream of two reporter genes (LacZ and HIS3) and both DNA-bait::reporter constructs are integrated into the yeast genome to generate chromatinized ‘DNA-bait strains.’ The TF-prey, encoded in a plasmid that expresses a TF fused to the activation domain (AD) of the yeast Gal4 TF, is introduced into the DNA-bait strain to fish for TF-DNA interactions. If the TF-prey binds to the DNA-bait sequence, then the AD present in the TF-prey will lead to the activation of both reporter genes. As a result, cells with a positive interaction can be selected for growth on plates lacking histidine, as well as overcoming a competitive inhibitor, 3-Amino-1,2,4-triazole (3-AT), and visualized as blue colonies in the presence of X-gal. Because the potent yeast Gal4 AD is used, Y1H assays can detect interactions involving transcriptional activators as well as repressors. In addition, given that TF-preys are expressed from a strong yeast promoter (ADH1), interactions can be detected even for TFs that have low endogenous expression levels, which are challenging to detect by ChIP11,12.
Most published protocols for performing Y1H assays are based on introducing TF-preys into the yeast DNA-bait strains by transforming pooled TF-prey libraries followed by selection, colony picking, and sequencing to identify the interacting TF, or by transforming individual clones8,9. These are time-consuming protocols, limiting the number of DNA sequences that can be tested per researcher. A recent improvement of Y1H assays, called enhanced Y1H (eY1H), has dramatically increased the screening throughput by using a high density array (HDA) robotic platform to mate yeast DNA-bait strains with a collection of yeast strains each expressing a different TF-prey10,13 (Figure 1C). These screens employ a 1,536 colony format allowing to test most human TFs in quadruplicate using only three plates. Further, given that TF-DNA interactions are tested in a pairwise manner, this approach allows for comparing interactions between DNA-baits (such as two noncoding single nucleotide variants) and between different TFs or TF variants11,12,14.
Using eY1H assays, we have delineated the largest human and Caenorhabditis elegans DNA-centered TF-DNA interactions networks to-date. In particular, we have identified 2,230 interactions between 246 human developmental enhancers and 283 TFs12. Further, we have employed eY1H assays to uncover altered TF binding to 109 single nucleotide noncoding variants associated with genetic diseases such as developmental malformation, cancer, and neurological disorders. More recently, we used eY1H to delineate a network comprising 21,714 interactions between 2,576 C. elegans gene promoters and 366 TFs11. This network was instrumental to uncover the functional role of dozens of C. elegans TFs.
The protocols to generate DNA-bait stains and evaluate the levels of background reporter activity have been reported elsewhere15,16,17. Here, we describe an eY1H pipeline that can be used to screen any human genomic DNA region against an array of 1,086 human TFs. Once a yeast DNA-bait strain is generated and a TF-prey array is spotted onto the corresponding plates, the entire protocol can be performed in two weeks (Table 1). More importantly, the protocol can be parallelized so that a single researcher can screen 60 DNA-bait sequences simultaneously. To demonstrate the protocol, we screened the promoters of two cytokine genes CCL15 and IL17F. In addition, we show results from failed screens to illustrate the types of problems that may arise when performing eY1H assays and how to troubleshoot them.
1. Preparations
2. Spotting a TF array
3. eY1H screen
Three main factors should be considered when analyzing results from eY1H assays: the background reporter activity of the DNA-bait strain, the strength of the reporter activity corresponding to TF-DNA interactions, and the number of positive colonies. The background reporter activity (i.e., autoactivity) of the DNA-bait strain refers to the overall growth and color of the yeast colonies in the readout plate, even in the absence of a TF-prey. Ideally, non-autoactive strains show a background white or light brown color, with colonies for positive interactions being bigger and blue. Autoactive DNA-bait strains show yeast growth in media lacking histidine and a blue color in the presence of X-gal for all colonies in the plate, which is likely related to the binding of yeast transcriptional activators to the DNA-bait8. The strength of the reporter activity corresponding to the TF-DNA interactions detected (i.e., the size of the colony and intensity of blue) depends on many parameters such as the affinity, the TF expression level in yeast, the number of binding sites and distance to the yeast minimal promoters located upstream of the reporter genes, and the background reporter activity of the DNA-bait strain. For example, a weak interaction may be easily detected in a low background bait but may be difficult to detect in an autoactive or uneven background bait. It is also important to note that reporter activity levels in yeast do not necessarily correlate with the regulatory activity in human cells, as the chromatin structure, nucleosome positioning, and distance effects are different between yeast and human. Further, interactions in human are likely to be influenced by the binding of other TFs and cofactors or may be masked by functionally redundant TFs8. Finally, interactions are considered positive in eY1H assays when at least two of the four colonies show reporter expression above background levels. However, we have observed that ~90% of interactions identified result from all four colonies corresponding to a TF being positive10,12,19.
To illustrate the type of results that can be obtained using eY1H assays we screened the promoter regions (2 kb upstream of the transcription start sites) of the CCL15 and IL17F genes, against an array of 1,086 human TFs (Figure 2). The CCL15 promoter is an example of a non-autoactive DNA-bait where interactions, even weak ones, can be easily detected (Figure 2A). The IL17F promoter is an example of an autoactive DNA-bait with uneven background reporter activity, where some interactions can be detected while for several TFs it is uncertain whether the reporter activity is higher than background (Figure 2B).
Problems that can be encountered when performing eY1H assays
Although the screening eY1H protocol is straight-forward and robust, several problems can be encountered during the screen:
1) Colonies are too small and fail to transfer (Figure 3A): Although it is expected that some yeast expressing exogenous TFs may display slow growth given that yeast gene expression may be dysregulated, typically ~95% of TF-prey colonies display normal growth. If more than 10% of colonies fail to grow, the most frequent causes are problems with the media or with the yeast transfer. Suboptimal growth is frequently related to one of the media components losing activity (e.g., uracil, histidine, or leucine), which can be solved by preparing fresh media with fresh stock solutions. Alternatively, this may also be related to a pinning offset that affects colony transfer. In this case, verify that the 1,536 pads pin the center of the yeast colonies in the source plates.
2) No yeast growth in a portion of the plate (Figure 3B): This issue is generally related with a failure in the mating step if the 1,536 pin pad fails to make contact with the yeast in the DNA-bait strain lawn, the TF array, or in the mating plate. In almost every case, this is due to uneven agar media level during plate pouring or due to excessive drying of the plate.
3) No interactions detected (Figure 3C and D): This issue is often related to either unintended inactivating mutations in the reporter genes, in particular LacZ (Figure 3C), or to high autoactivity that mask interactions (Figure 3D). To troubleshoot this problem, it is recommended to screen another independently obtained strain corresponding to the same DNA-bait.
4) The plate presents random blue spots (Figure 3E): This issue is often related to bacterial contamination. To solve this issue, streak the yeast to obtain individual colonies, and repeat the screen.
The above are the most frequent problems encountered when performing eY1H assays. Should other problems arise, preparing new media, confirming that appropriate settings for the HDA robot were used, and testing multiple strains per DNA-bait would likely solve most issues.
Figure 1: Outline of eY1H assay screens. (A) Comparison between TF-centered and DNA-centered methods to identify protein-DNA interactions. (B) Schematics of eY1H assays. A DNA sequence of interest (promoter, enhancer, silencer, etc.) cloned upstream of the HIS3 and LacZ reporter genes is integrated into the yeast genome. The resulting DNA-bait strain is mated to a collection of yeast strains harboring TFs fused to the Gal4 activation domain (AD). Positive interactions are determined by the yeast’s ability to grow without histidine and overcoming competitive inhibitor 3-AT, and turn blue in the presence of X-gal. (C) Pipeline for eY1H screens. A lawn of a yeast DNA-bait strain grown in a YAPD plate is mated in a YAPD plate to a 1,536 colony array expressing TFs fused to AD grown on a Sc −Trp plate. After one day, the yeast is transferred to a Sc −U −Trp to select for diploid yeast. After a 2–3 day incubation, the yeast is transferred to a Sc −U −H −Trp + 3AT + X-gal plate (readout plate) to identify protein-DNA interactions. Each interaction is tested in quadruplicate. Please click here to view a larger version of this figure.
Figure 2: Examples of eY1H readout plates. (A) Interactions involving the promoter of CCL15, a non-autoactive bait. Background reporter activity for this bait is low (reduced growth in the absence of histidine and absence of blue color for non-interacting TFs). (B) Interactions involving the promoter of IL17F, an autoactive bait. Background reporter activity for this bait is high (growth in the absence of histidine and background blue color throughout the plate) and uneven, making it challenging to identify protein-DNA interactions. Strong, medium, and weak interactions are squared in red, orange, and yellow, respectively. The HGNC names of the interacting TFs are shown. Please click here to view a larger version of this figure.
Figure 3: Problems in eY1H screens. (A) TF-prey array where multiple colonies failed to grow. (B) Readout plate where colonies in the lower left corner have failed to transfer. (C) Non-autoactive DNA-bait strain that does not display positive interactions. (D) Highly autoactive DNA-bait strain that does not display positive interactions. (E) Readout plate displaying multiple blue colonies due to contamination. Please click here to view a larger version of this figure.
Spotting a TF array | |
Day 1 | Spot yeast into Sc –Trp plate in 96 colony format (2.1 and 2.2) |
Day 4 | Generate 384 colony TF array (2.3) |
Day 6 | Generate 1,536 colony TF array (2.4) |
Day 9 | Amplify 1,536 colony TF array (2.5) |
Preparing DNA-bait strain lawns for mating | |
Day 6 | Spot the yeast DNA-bait strains (3.1.1) |
Day 9 | Streak yeast, 12-16 strains per plate (3.1.2) |
Day 10 | Streak yeast, 4 strains per plate (3.1.3) |
Day 11 | Prepare DNA-bait lawns (3.1.4 and 3.1.5) |
Mating of yeast DNA-bait and TF array strains | |
Day 12 | Mating in YAPD plates (3.2) |
Selection of diploid yeast | |
Day 13 | Selection of diploid yeast in Sc –U–Trp plates (3.3) |
Transfer to readout plates | |
Day 15 | Transfer diploid yeast to readout plates (3.4) |
Imaging of readout plates | |
Days 17-22 | Image acquisition of readout plates depending on background (3.5) |
Table 1: TFF Array.
REAGENT | QUANTITY (for 2 L) |
Drop-out mix synthetic minus histidine, leucine, tryptophan and uracil, adenine, rich (2 g) w/o yeast nitrogen base | 2.6 g |
Yeast nitrogen base without amino acids and without ammonium sulfate (YNB) | 3.4 g |
Adenine hemisulfate dihydrate | 160 mg |
Ammonium sulfate | 10 g |
Agar | 35 g |
Glucose (40%, w/v) in water, sterile | 100 mL |
Leucine (100 mM), sterile filtered | 16 mL |
Tryptophan (40 mM), sterile filtered | 16 mL |
Table 2: Reagent List I.
REAGENT | QUANTITY (for 2 L) |
Peptone | 40 g |
Yeast extract | 20 g |
Adenine hemisulfate dihydrate | 0.32 g |
Glucose (40%, w/v) in water, sterile | 100 mL |
Agar | 35 g |
Table 3: Reagent List II.
REAGENT | QUANTITY (for 2 L) |
Drop-out mix synthetic minus histidine, leucine, tryptophan and uracil, adenine rich (2 g) w/o yeast nitrogen base | 2.6 g |
Yeast nitrogen base without amino acids and without ammonium sulfate (YNB) | 3.4 g |
Adenine hemisulfate dihydrate | 160 mg |
Ammonium sulfate | 10 g |
Agar | 35 g |
Glucose (40%, w/v) in water, sterile | 100 mL |
Leucine (100 mM), sterile filtered | 16 mL |
Histidine (100 mM), sterile filtered | 16 mL |
Uracil (20 mM), sterile filtered (omit for Sc –U –Trp plates) | 16 mL |
Table 4: Reagent List III.
REAGENT | QUANTITY (for 2 L) |
Drop-out mix synthetic minus histidine, leucine, tryptophan and uracil, adenine rich (2 g) w/o yeast nitrogen base | 2.6 g |
Yeast nitrogen base without amino acids and without ammonium sulfate (YNB) | 3.4 g |
Adenine hemisulfate dihydrate | 160 mg |
Ammonium sulfate | 10 g |
Agar | 35 g |
Glucose (40%, w/v) in water, sterile | 100 mL |
10x BU salts | 200 mL |
Leucine (100 mM), sterile filtered | 16 mL |
3AT (2 M), sterile filtered | 5 mL |
X-gal (80 mg/mL) in DMF | 4 mL |
Table 5: Reagent List IV.
The robotic eY1H mating screening approach described here greatly increases the throughput to identify the set of TFs that bind to a DNA region of interest, compared to previous library screening or arrayed screening approaches based on transformation. Further, the TF-DNA interactions detected by eY1H assays are highly reproducible as 90% of interactions detected are positive for all four colonies tested per TF, and 90% of interactions retest in an independent screen of the same yeast DNA-bait strain10,12,19. More importantly, TF-DNA interactions detected by eY1H validate at a 40%–70% rate when tested in human reporter assays12,20, in primary human cells (unpublished results), and in C. elegans knockout animals11. This is a similar validation rate to that observed for ChIP-seq data21.
Although interactions identified by eY1H are highly reproducible when retesting the same yeast DNA-bait strain, testing different yeast strains for the same DNA-bait sometimes produces different, although overlapping, sets of TF-DNA interactions. This is usually due to differences in background reporter activity between strains. In addition, testing fragments of a DNA sequence results in the detection of more TF-DNA interactions than testing the full sequence, in particular when overlapping fragments are tested. This may be related with the assay being more efficient in identifying interactions that are close to the reporter minimal promoters, and because testing overlapping fragments reduces the chances that a binding site may be occluded by yeast nucleosomes. Thus, for small scale projects, it is recommended that overlapping 0.5–1 kb fragments of a regulatory region are tested and that two independent strains are screened for each DNA-bait sequence8.
There are several critical steps in the eY1H screening protocol to avoid some of the issues presented in Figure 3. First, although most media ingredients are stable for several months (except for 3AT and X-gal), a lack of proper colony growth likely indicates that at least one of the ingredients may have lost activity and should be replaced. Second, it is important to prepare the rectangular plates so that the agar is leveled and so that they do not dry for more than one day to avoid failure in pinning when using the robotic platform. Finally, it is key to use the robotic platform programs as indicated in the protocol (revisit, recycle, mixing, etc.) for the yeast to be transferred effectively, for mating to be efficient, and to avoid cross contamination between yeast clones.
The examples we selected to illustrate the use of eY1H screens correspond to human gene promoters. However, other regulatory regions can also be tested including enhancers and silencers. For example, we have used eY1H assays to evaluate TF binding to human developmental enhancers and to C. elegans first introns12,22. In addition, given that interactions are tested in a pairwise manner, eY1H assays can be used to compare interactions between non-coding variants, and between TF coding sequence variants. For example, using eY1H assays we identified altered TF binding to 109 noncoding variants associated with different genetic diseases, and also differential interactions profiles for 58 TF missense mutations12,14. Although this protocol focuses on evaluating TF binding to human regulatory regions, DNA regions from other species can also be tested provided that a TF-prey is available or can be generated. Indeed, TF-prey arrays have been generated for C. elegans10, Drosophila melanogaster23, Mus musculus24, Arabidopsis thaliana25,26, and Zea mays27. Thus, with increasingly available resources, eY1H assays may be applied to additional systems.
Although eY1H assays have been instrumental to identify the repertoire of TFs that bind to different regulatory regions in human and other species, they are not free of caveats8,11,12,19,20,25. One of the limitations is that interactions are tested in the milieu of the yeast nucleus and, although the DNA-baits are chromatinized, the chromatin structure in yeast may not reflect the chromatin structure in the species from where the DNA-bait originated and will not reflect cell type differences observed in vivo. Thus, interactions identified by eY1H assays must be validated in reporter or other functional assays. Of note, we and others have found TF-DNA interactions detected by eY1H validate at a 40%–70% rate in functional assays11,12,20,23. Another limitation of eY1H assays is that it cannot detect interactions involving TFs that require post-translational modifications absent in yeast to bind to DNA, TFs that are not properly folded in yeast when fused to the AD, and TFs that are missing from the array8. In addition, in the current format, eY1H assays do not detect interactions involving heterodimeric TFs, as each yeast colony in the TF array expresses a single TF-prey. Thus, further improvements in the assay will increase the breadth of TFs that can be tested and expand the capabilities of eY1H assays to identify novel TF-DNA interactions
The authors have nothing to disclose.
This work was supported by the National Institutes of Health [R35-GM128625 to J.I.F.B.].
3-Amino-1,2,4-triazole (3AT) ~95 % TLC | Sigma | A8056-100G | Competitive inhibitor for products of HIS3 gene |
Adenine sulfate (hemisulfate), dihydrate | US Biologicals | A0865 | Required for proper yeast growth |
Agar High Gel Strength – Bacteriological grade | American International Chemical | AGHGUP | Nutritive media for yeast growth |
Ammonium Sulfate | US Biologicals | A1450 | Nitrogen source in synthetic yeast media |
D+ Glucose Anhydrous | US Biologicals | G3050 | Required for yeast growth |
Drop-Out Mix minus His, Leu, Tryp and Uracil, adenine rich w/o yeast nitrogen base | US Biologicals | D9540-02 | Synthetic complete media required for yeast growth |
edge Multiparameter pH Meter | Hanna Instruments | HI2020-01 | To measure pH of selective media |
Flat Toothpicks 750ct | Diamond | To streak yeasts on petridishes | |
Glass Beads | Walter Stern | 100C | To spreak yeast when making lawns |
Glycerol ≥99% | Millipore Sigma | G9012-1L | Required to make frozen yeast stocks |
L-Histidine | US Biologicals | H5100 | For yeast growth selection in selective media |
L-Leucine | US Biologicals | L2020-05 | For yeast growth selection in selective media |
L-Tryptophan | Sigma | T-0254 | For yeast growth selection in selective media |
N,N-Dimethylformamide | Sigma | 319937-1L | To make X-gal solution |
Omnipense Elite | Wheaton | W375030-A | For dispensing accurate volumes of media into Singer plates |
Peptone, Bacteriological | American International Chemical | PEBAUP | Protein source required for yeast growth |
Petri Dish, 150×15 mm | VWR | 10753-950 | For growing yeast baits for screening |
PlusPlates | Singer Instruments | PLU-003 | To make rectangular agar plates to use with Singer Robot |
Precision Low Temperature BOD Refrigerated Incubator | ThermoFisher Scientific | PR205745R | To incubate yeast plates at constant temperature |
RePads 1,536 short | Singer Instruments | REP-005 | To transfer the TF-prey array, mate yeast, and transfer yeast to diploid selection and readout plates |
RePads 384 short | Singer Instruments | REP-004 | To transfer TF-prey array from 384 to 1,536 colony format |
RePads 96 long | Singer Instruments | REP-001 | To transfer TF-prey array from glycerol stock to agar plate |
RePads 96 short | Singer Instruments | REP-002 | To transfer TF-prey array from 96 to 384 colony format |
Singer HDA RoToR robot | Singer Instruments | For transfering yeast in high-throughput manner | |
Sodium Hydroxide (Pellets/Certified ACS) | Fisher | S318-1 | For adjusting pH of selective media |
Sodium Phosphate dibasic heptahydrate | Santa Cruz Biotechnology | sc-203402C | Required for LacZ reporter activity on X-gal |
Sodium Phosphate monobasic monohydrate | Santa Cruz Biotechnology | sc-202342B | Required for LacZ reporter activity on X-gal |
Uracil | Sigma | U0750-100G | For yeast growth selection in selective media |
X-gal (5-Bromo-4-chloro-3-indoxyl-beta-Dgalactopyranoside) | Gold Biotechnology | X4281C100 | β-galactosidase turns colorless X-gal blue to detect protein-DNA interaction |
Yeast Extract | US Biologicals | Y2010 | Nutritious medium for growth and propagation of yeast |
Yeast Nitrogen Base (powder) w/o AA, carbohydrate and w/o AS | US Biologicals | Y2030 | Required for vigorous yeast growth |