Retrograde transport of proteins from the cell surface to the Golgi is essential to maintain membrane homeostasis. Here, we describe a method to biochemically analyze cell surface-to-Golgi transport of recombinant proteins using functionalized nanobodies in HeLa cells.
Transport of proteins and membranes from the cell surface to the Golgi and beyond is essential for homeostasis, organelle identity and physiology. To study retrograde protein traffic, we have recently developed a versatile nanobody-based toolkit to analyze transport from the cell surface to the Golgi complex, either by fixed and live cell imaging, by electron microscopy, or biochemically. We engineered functionalized anti-green fluorescent protein (GFP) nanobodies — small, monomeric, high-affinity protein binders — that can be applied to cell lines expressing membrane proteins of interest with an extracellular GFP moiety. Derivatized nanobodies bound to the GFP reporters are specifically internalized and transported piggyback along the reporters' sorting routes. Nanobodies were functionalized with fluorophores to follow retrograde transport by fluorescence microscopy and live imaging, with ascorbate peroxidase 2 (APEX2) to investigate the ultrastructural localization of reporter-nanobody complexes by electron microscopy, and with tyrosine sulfation (TS) motifs to assess kinetics of trans-Golgi network (TGN) arrival. In this methodological article, we outline the general procedure to bacterially express and purify functionalized nanobodies. We illustrate the powerful use of our tool using the mCherry- and TS-modified nanobodies to analyze endocytic uptake and TGN arrival of cargo proteins.
Retrograde traffic of proteins and lipids from the cell surface to various intracellular compartments is crucial for maintenance of membrane homeostasis to counterbalance secretion and to recycle components of anterograde transport machineries1,2. Following internalization via clathrin-dependent or -independent endocytosis, protein and lipid cargo first populate early endosomes from where they are further redirected either along the endo-lysosomal system, recycled to the plasma membrane, or targeted to the trans-Golgi network (TGN). Recycling from endosomes and/or the cell surface to the TGN is part of the functional cycle of a number of anterograde transmembrane cargo receptors, such as the cation-dependent and cation-independent mannose-6-phosphate receptors (CDMPR and CIMPR) delivering newly synthesized lysosomal hydrolases from the TGN to late endosomes and lysosomes3,4,5, sortilin and SorLA6,7, and Wntless (WLS) transporting Wnt ligands to the cell surface8,9,10,11. Other proteins retrieved back to the TGN are TGN46 and its related isoforms12,13,14, SNAREs (soluble N-ethylmaleimide-sensitive fusion factor attachment receptors)15,16,17, amyloid precursor protein (APP)18,19, progressive ankylosis (ANK) protein20, metal transporters such as ATP7A/B or DMT121,22, and transmembrane processing enzymes including carboxypeptidase D, furin or BACE123,24,25. Apart from these endogenous proteins, bacterial and plant toxins (e.g., Shiga and cholera toxin, ricin and abrin) hijack retrograde transport machineries to reach the ER for retrotranslocation into the cytosol26,27,28,29.
In order to directly analyze retrograde traffic, we have previously developed a nanobody-based toolkit to label and follow cargo proteins from the cell surface to intracellular compartments30. Nanobodies represent a new family of protein binders derived from homodimeric heavy-chain-only antibodies (hcAbs) that naturally occur in camelids and cartilaginous fishes31,32. They constitute the variable heavy-chain domain (VHH) of hcAbs and have many advantages over conventional antibodies (e.g., IgGs): They are monomeric, small (~15 kDa), highly soluble, devoid of disulfide bonds, can be bacterially expressed, and selected for high-affinity binding33,34,35,36. To make our nanobody tool versatile and broadly applicable, we employed functionalized anti-GFP nanobodies to surface-label and track proteins tagged with GFP at their extracellular/lumenal domain. By functionalization of nanobodies with mCherry, ascorbate peroxidase 2 (APEX2)37, or tyrosine sulfation (TS) sequences, retrograde transport of bonafide transmembrane cargo proteins can be analyzed by either fixed and live cell imaging, by electron microscopy, or biochemically. Since tyrosine sulfation mediated by tyrosylprotein sulfotransferases (TPST1 and TPST2) is a posttranslational modification restricted to the trans-Golgi/TGN, we can directly study transport and kinetics of proteins of interest from the cell surface to this intracellular Golgi compartment38,39,40.
In this methods article, we describe the ease of production of functionalized nanobodies (VHH-2xTS, -APEX2, -mCherry and derivatives) suited for a number of applications to analyze retrograde transport in mammalian cells30. We mainly focus on the use of TS site-modified nanobody for analysis of intracellular traffic from the cell surface to the compartment of sulfation.
1. Bacterial Transformation with Functionalized Nanobodies
NOTE: This protocol has been optimized for the expression, purification, and analysis of functionalized anti-GFP nanobodies as previously described30. Derivatization with other protein moieties might require modification of this standard protocol.
2. Bacterial Liquid Culture and Induction of Functionalized Nanobody Expression
3. Purification of Functionalized Nanobodies
4. Validation of Functionalized Nanobody Expression (Coomassie Staining)
5. Uptake of Functionalized Nanobodies by Cultured Cells for Fluorescence Staining
6. Uptake of Functionalized Nanobodies by Cultured Cells (for Sulfation Analysis)
To investigate retrograde protein transport to various intracellular destinations, we have recently established an anti-GFP nanobody-based tool to label and follow recombinant fusion proteins from the cell surface30. Here, we demonstrate the bacterial production of such derivatized nanobodies and demonstrate their application to study endocytic uptake by fluorescence microscopy and immunoblotting, as well as their use to investigate TGN arrival by sulfation analysis. The latter application is the methodological focus of this protocol.
We have generated a toolbox of different functionalized anti-GFP nanobodies with common features by standard molecular cloning30. Our simplest (standard) nanobody, VHH-std, contains the VHH domain, a T7 and an HA epitope for subsequent detection by specific antibodies, a carboxyterminal hexahistidine (His6)-tag for purification, and a biotin acceptor peptide (BAP) sequence for biotinylation and high-affinity streptavidin pull-down experiments (Figure 1A). Derivatization of VHH-std yields different nanobody variants to examine endocytic uptake and retrograde transport biochemically, by fixed and live cell imaging, and by electron microscopy.
To assess protein traffic from the plasma membrane to the trans-Golgi/TGN, we took advantage of the exclusive localization of tyrosylprotein sulfotransferases in these compartments and thus modified VHH-std with a tandem tyrosine sulfation site (2xTS) derived from rat procholecystokinin41. While modification of VHH-std with mCherry allows direct visualization of retrograde transport by fixed and live cell imaging, functionalization with a peroxidase, such as APEX237, enables electron microscopy studies, cytochemical compartment ablation, or proximity-dependent biotinylation reactions. In addition, insertion of a cleavage site for the tobacco etch virus (TEV) protease allows to biochemically distinguish between intracellular and surface-bound nanobodies (Figure 1A). We have previously used VHH-tev to monitor endocytic recycling kinetics of nanobody-bound EGFP-CDMPR and TfR-EGFP30. Nanobody reappearance at the cell surface after uptake could be simply assessed by chasing with extracellularly applied recombinant TEV protease causing an inverse loss of the nanobody's carboxyterminal epitope cassette. Including a cleavage site in the mCherry or APEX2 nanobody fusion is useful to study recycling kinetics of EGFP reporters by live cell imaging in a similar way to VHH-tev, or to limit cytochemical reactions to intracellular compartments, respectively. Functionalization with other protein domains (e.g., other fluorophores or enzymes) or target sequences for other posttranslational modifications can be easily achieved by subcloning a respective insert into the plasmid vector encoding VHH-std (see also Table 1 for plasmid information) using available SpeI and EcoRI restriction sites.
Using the protocol as described above, all nanobodies illustrated here can be isolated to high purity and yield (Figure 1B). Only mCherry fusions showed minor clipping of protein domains post purification (Figure 1B, see lanes 7-8). In the absence of BirA expression, we typically obtained 25-35 mg for VHH-std, VHH-2xTS and their tev-modified counterparts, or ~20 mg for VHH-APEX2 and VHH-mCherry and their tev-containing derivatives. Our experience shows that BirA coexpression lowers nanobody yield by a third to a half.
To illustrate reporter-mediated nanobody uptake, we have used HeLa cell lines stably expressing EGFP-Calnexin (CNX), EGFP-CDMPR, and TfR-EGFP (Figure 2A and B). EGFP was fused to the extracellular/lumenal end of each protein (i.e., between the signal and reporter sequence of CNX or CDMPR), and to the carboxyterminus of the TfR, leaving the cytosolic sorting signals unobstructed. All of these EGFP-tagged cargo molecules have different intracellular trafficking itineraries after ER targeting. Since EGFP-Calnexin is resident in the ER and normally does not reach post-Golgi compartments, it serves as a negative control for potential and nonspecific nanobody uptake. In contrast, both EGFP-CDMPR and TfR-EGFP have transport functions beyond the Golgi and thus steadily appear at the plasma membrane. As expected, when VHH-mCherry was added to a mixed population of unmodified HeLa and cells stably expressing EGFP-CNX, no nanobody internalization could be observed in either case. However, both EGFP-CDMPR and TfR-EGFP captured VHH-mCherry at the cell surface and transported them piggyback to the reporter's homing compartments (Figure 2C).
VHH-mCherry colocalization with a resident TGN marker could be used in principle to assess TGN arrival. Yet, we established a biochemical approach based on tyrosine sulfation. In order to take advantage of this modification occurring in the trans-Golgi/TGN, nanobodies were functionalized with TS sites (Figure 1A). To demonstrate the specificity and functionality of these protein binders, we incubated unmodified HeLa cells and cells stably expressing EGFP-CNX, EGFP-CDMPR and TfR-EGFP with VHH-std or VHH-2xTS for 1 h in the presence of radioactive sulfate. Radiolabeling of VHH-2xTS only occurs when a reporter transports the nanobody retrogradely to the TGN where it is exposed to the tyrosine sulfation machinery. HeLa expressing EGFP-CNX and their parental cells display no nanobody uptake and thus no sulfation. Both EGFP-CDMPR and TfR-EGFP internalized nanobodies, the latter considerably more than the former. Nevertheless, only EGFP-CDMPR caused VHH-2xTS to be sulfated (Figure 3A). This confirms efficient retrograde transport of CDMPR from the cell surface to the TGN and provides evidence against TfR returning to the TGN (as has been suggested in some studies42,43).
Kinetics of internalization and TGN arrival of reporter proteins can also be determined by analyzing cell lysates after different times of nanobody uptake and sulfation. Using EGFP-CDMPR as reporter, we found sulfation to start only after a lag period of ~15 min and to reach saturation only after >75 min (Figure 3B, lanes 1-6, and C, square symbols). Uptake and sulfation kinetics appeared shifted by almost 30 min, reflecting the transport to the TGN. In addition, the method allows to investigate the sorting machinery involved in MPR transport by pharmacological interference or protein silencing approaches such as knockdown, knockout, or knocksideways. Here, we used brefeldin A (BFA), an inhibitor of guanine nucleotide exchange factors (GEFs) of several Arf GTPases, to generally interfere with retrograde transport to the TGN. When treated with BFA, sulfation was completely abolished, while uptake remained unaffected both in kinetics and in extent (Figure 3B, lanes 7-12, and C, round symbols).
Figure 1: Design and production of functionalized nanobodies to track EGFP-modified cell surface proteins. (A) Schematic representation of the derivatized nanobodies. The standard nanobody consists of the GFP-specific VHH domain, T7 and HA epitope tags, a BAP, and a hexahistidine (His6) purification tag. Other nanobodies in addition comprise two TSs, APEX2, or mCherry, each with or without a cleavage site for TEV protease (tev). Scale bar is in amino acids (aa). (B) Bacterially expressed and purified nanobodies (50 μg) were analyzed by gradient SDS-gel electrophoresis and stained with Coomassie. Marker proteins with molecular mass in kDa are shown on the left. Only VHH-mCherry and VHH-tev-mCherry showed minimal clipping between the VHH and the mCherry domains. Please click here to view a larger version of this figure.
Figure 2: Uptake and intracellular localization of VHH-mCherry by different EGFP reporter proteins. (A) Schematic representation of EGFP fusion proteins. Sequences derived from secretory membrane proteins are shown in black with N-terminal signal peptides and internal transmembrane segments in yellow, and EGFP is illustrated in green. EGFP was fused to full-length CDMPR, TfR, and Calnexin (CNX). Scale bar in amino acids (aa). EGFP-CDMPR and TfR-EGFP have been described30. (B) HeLa cells stably expressing EGFP reporter proteins were harvested, lysed, and analyzed by SDS-gel electrophoresis and immunoblotting using anti-GFP and anti-actin antibodies. Molecular mass in kDa is indicated on the right. (C) HeLa cells stably expressing the EGFP-tagged reporter proteins were mixed with parental HeLa cells, incubated with 5 μg/mL VHH-mCherry (~100 nM) for 1 h at 37 °C and processed for fluorescence microscopy. Scale bar = 10 μm. Uptake only occurs by cells expressing a reporter with EGFP exposed at the cell surface. Please click here to view a larger version of this figure.
Figure 3: Sulfation analysis and kinetics of retrograde transport to the TGN using TS-tagged nanobodies. (A) Parental and HeLa cells stably expressing EGFP-modified reporter proteins were labeled using 0.5 mCi/mL [35S]sulfate for 60 min with 2 μg/mL VHH-std or VHH-2xTS. Nanobodies were isolated using Nickel beads, separated on a 12.5 % SDS-PAGE followed by autoradiography. Aliquots of cell lysates were collected before the Nickel pull down and immunoblotted for cell-associated nanobody (His6), EGFP, and actin. (B and C) HeLa cells stably expressing EGFP-CDMPR were labeled with 0.5 mCi/mL [35S]sulfate for up to 75 min in the presence of 2 μg/mL VHH-2xTS with and without 2 μg/mL BFA before analysis as in (A). Quantitation of VHH-2xTS uptake and sulfation from three independent experiments is shown in percent of the value without BFA after 75 min (mean and SD). Black squares, without BFA; grey circles, with BFA; open symbols, uptake; filled symbols, sulfation. This figure has been modified and extended from Buser et al., 2018, PNAS30. Please click here to view a larger version of this figure.
Table 1: Protein sequences of the functionalized nanobodies shown in this study. T7 epitope in grey, VHH in black, HA epitope in blue, BAP sequence in orange, hexahistidine (His6) in red, TEV protease cleavage site in purple, myc epitope in magenta, the tyrosine sulfation sequence in yellow, APEX2 in green, and mCherry in pink. The expression vectors encoding these functionalized anti-GFP nanobodies have been deposited (see also Table 1 for plasmid information). Please click here to download this file.
Nanobodies represent an emerging class of protein binder scaffolds with many advantages over conventional antibodies: they are small, stable, monomeric, can be selected for high affinity and lack disulfide bonds33,35,44,45. They are used in a number of applications, such as in cell culture systems and organisms in developmental biology46,47,48,49, as crystallization chaperones to stabilize conformational states in structural biology50,51,52,53, as inhibitors or activity modulators of enzymes54,55,56, as immunohistochemical reagents for biochemical analyses57, or as "secondary nanobodies" to detect anti-mouse and anti-rabbit immunoglobulins on immunoblots and immunofluorescence58. In our previous study, we have developed and applied functionalized nanobodies produced by bacterial expression to surface-label proteins and track their intracellular route to various compartments, in particular to the TGN30. We used an anti-GFP nanobody to make the tool versatile, able to target fusion proteins with extracellular GFP, YFP, or mCerulean that might already be available and characterized. Modification of anti-GFP nanobodies with mCherry, APEX2, or TS sites allowed us to monitor reporter uptake by fixed and live cell imaging, to ultrastructurally visualize retrograde transport compartments, to ablate these compartments, or to study transport kinetics to the TGN. One drawback of our tool is that recombinant modification of target cell lines (stable expression or endogenous tagging) is required before functionalized anti-GFP nanobodies can be applied. Functionalization can of course be also applied to the rapidly increasing number of nanobodies directed against untagged endogenous target proteins established by animal immunization or by ribosome-display and phage-display selection of synthetic VHH libraries59. Using nanobodies modified with TS sites (e.g., VHH-2xTS), we can directly measure transport and kinetics of TGN arrival of diverse EGFP-modified target proteins. We have applied VHH-2xTS to study the contribution of the adaptor protein complex 1 (AP-1) in retrograde transport of MPRs by direct kinetic analysis in knocksideways cells allowing rapid inactivation of the given transport machinery30. Nanobody sulfation and hence retrograde transport of EGFP-labeled MPRs was partially, but not completely blocked. Our nanobody-based approach using sulfation as TGN arrival sensor confirmed previous results from other laboratories indicating a functional contribution of AP-1 in retrograde endosome-to-TGN transport17,60,61. Sulfatable nanobodies can thus provide a useful biochemical tool to dissect the contribution of other retrograde transport machineries, such as epsinR, Rab9/TIP47 or SNX-BAR/retromer complexes, on cargo proteins by genomic, genetic or chemical manipulations. The protocol presented here offers a basis of how one can make use of functionalized nanobodies in general to determine target compartments, pathways, and transport kinetics in cultured cells.
Other groups have already made use of TS sites to follow transport from the cell surface to the TGN. Ricin, Shiga or pertussis toxin subunits have previously been modified with sulfation sites to demonstrate a transport route through the TGN62,63,64,65,66. Moreover, TS peptides had also been chemically coupled to IgGs to assay retrograde transport of GFP-CIMPR and endogenous TGN46 to the TGN67,68. Our sulfatable nanobodies have the advantage of simple and reproducible bacterial production and of a 1:1 stoichiometry with the target protein. On the contrary, it is for instance well known that divalent protein binders, such as IgGs, can crosslink cell surface proteins and alter their intracellular trafficking to lysosomes after endocytosis69,70, highlighting the significance of monomeric protein binders with respect to existing methods. A critical step of our technique is that handling with radioactivity is required to perform sulfate labeling of nanobodies. However, our tool of functionalized nanobodies with TS sites to study TGN arrival may be potentially applied without radioactivity using anti-sulfotyrosine antibodies.
Our previous study suggests that nanobody sulfation are not very efficient, since sulfation of MPRs had not yet reached a maximum after 75 min, even though nanobody uptake was saturated after 45 min30. Screening for other natural TS sites might improve sulfation efficiency. Alternatively, to potentially enhance sulfation efficiency, components of the sulfation machinery itself, such as TPST1 and TPST2, might be overexpressed. Indeed, it has been previously shown that overexpression of one of the transporters delivering 3'-phoshoadenosine-5'-phosphosulfate (PAPS), the substrate for TPSTs, from the cytosol to the lumen of the Golgi could alter the sulfation status of proteoglycans71.
Apart from sulfatable nanobodies, other derivatizations also allow tracing transport through endocytic compartments and to the TGN. APEX2 can be applied as a promiscuous labeling enzyme for proximity-dependent biotinylation for proteomic analysis of retrograde transport. APEX2 nanobody that is internalized by a cargo reporter of interest will label proteins in close proximity within the target compartments. Comparative proteomics should allow to identify other endogenous proteins in the different types of endosomes and the TGN that the nanobody accesses. Many variations of nanobodies in combination with its target protein are conceivable. A recent report, for instance, applied an inverted approach to the one described here: derivatized GFP was used to study and trap cellularly expressed anti-GFP nanobody-tagged vacuolar sorting receptors in anterograde and retrograde compartments of the plant endomembrane system72. Similarly, functionalized nanobody-traps may be designed in mammalian cell culture systems to capture and accumulate EGFP-modified reporters in different compartments during retrograde transport.
Our here presented method and protocol with the focus on TS site-tagged nanobodies allows quantitative and qualitative tracking of cargo proteins from the cell surface to endocytic compartments and the TGN in cultured mammalian cells.
The authors have nothing to disclose.
This work was supported by Grant 31003A-162643 by the Swiss National Science Foundation. We thank Nicole Beuret and the Biozentrum Imaging Core Facility (IMCF) for support.
Anti-GFP antibody | Sigma-Aldrich | 118144600001 | Product is distributed by Sigma-Aldrich, but manufactured by Roche |
Anti-His6 antibody | Bethyl Laboratories | A190-114A | |
Anti-actin antibody | EMD Millipore | MAB1501 | |
Goat anti-rabbit HRP | Sigma-Aldrich | A-0545 | |
Goat anti-mouse HRP | Sigma-Aldrich | A-0168 | |
4',6-diamidino-2-phenylindole (DAPI) | Sigma-Aldrich | D9542 | dissolved in 1 x PBS/1%BSA |
Dimethyl sulfoxide (DMSO) | Applichem | A3672 | |
D-biotin | Sigma-Aldrich | B4501 | dissolved in sterile 500 mM NaH2PO4 or DMSO |
5-aminolevuilnic acid (dALA) hydrochloride | Sigma-Aldrich | A3785 | dissolved in sterile water |
DNase I | Applichem | A3778 | dissolved in sterile water |
Lysozyme | Sigma-Aldrich | 18037059001 | Product is distributed by Sigma-Aldrich, but manufactured by Roche |
Brefeldin A (BFA) | Sigma-Aldrich | B5936 | |
Puromycin | Invivogen | ant-pr-1 | |
Penicillin/Streptomycin | Bioconcept | 4-01F00-H | |
L-glutamine | Applichem | A3704 | |
Dulbecco’s modified Eagle’s medium (DMEM) | Sigma-Aldrich | D5796 | |
Fetal calf serum (FCS) | Biowest | S181B-500 | |
Sulfur-35 as sodium sulfate | Hartmann Analytics | ARS0105 | Product contains 5 mCi |
Earle's balanced salts | Sigma-Aldrich | E6267 | |
MEM amino acids (50 x) solution | Sigma-Aldrich | M5550 | |
MEM vitamin solution (100 x) | Sigma-Aldrich | M6895 | |
cOmplete, Mini Protease inhibitor cocktail | Sigma-Aldrich | 11836153001 | Product is distributed by Sigma-Aldrich, but manufactured by Roche |
Isopropyl-β-D-thiogalactopyranosid (IPTG) | Applichem | A1008 | dissolved in sterile water, stock is 1 M |
Carbenicillin disodium salt | Applichem | A1491 | dissolved in sterile water, stock is 100 mg/mL |
Kanamycin sulfate | Applichem | A1493 | dissolved in sterile water, stock is 100 mg/mL |
Coomassie-R (Brilliant Blue) | Sigma-Aldrich | B-0149 | |
Paraformaldehyde (PFA) | Applichem | A3813 | |
Bovine serum albumin (BSA) | Sigma-Aldrich | A2153 | |
Fluoromount-G | Southern Biotech | 0100-01 | |
Ni Sepharose High Performance | GE Healthcare | 17-5268-01 | |
His GraviTrap columns | GE Healthcare | GE11-0033-99 | |
His buffer kit | GE Healthcare | GE11-0034-00 | |
Disposable PD10 desalting columns | GE Healthcare | GE17-0851-01 | |
Mini-Protean TGX gels, 4-20%, 15-well | Bio-Rad | 456-1096 | |
Dulbecco’s phosphate buffered saline (DPBS) w/o Ca2+/Mg2+ | Sigma-Aldrich | D8537 | |
35-mm dishes | Falcon | 353001 | |
6-well plates | TPP | 92406 | |
Glass coverslips (No. 1.5H) | VWR | 631-0153 | |
Phenylmethylsulfonyl fluoride (PMSF) | Applichem | A0999.0025 | dissolved in 40% DMSO 60% isopropanol, stock in 500 mM |
Tryptone | Applichem | A1553 | |
Yeast extract | Applichem | A1552 | |
Magnesium chloride hexahydrate | Merck Millipore | 105833 | dissolved in sterile water, stock is 1 M |
Calcium chloride dihydrate | Merck Millipore | 102382 | dissolved in sterile water, stock is 1 M |
Sodium chloride | Merck Millipore | 106404 | dissolved in sterile water, stock is 5 M |