A microfluidic channel with deformable sidewalls offers flow control, particle handling, channel dimension customization and other reconfigurations while in use. We describe a method for fabricating a microfluidic channel with sidewalls made of an array of pins that allows their shape to change.
Microfluidic components need to have various shapes to realize different key microfluidic functions such as mixing, separation, particle trapping, or reactions. A microfluidic channel that deforms even after fabrication while retaining the channel shape enables high spatiotemporal reconfigurability. This reconfigurability is required in such key microfluidic functions that are difficult to achieve in existing “reconfigurable” or “integrated” microfluidic systems. We describe a method for the fabrication of a microfluidic channel with a deformable sidewall consisting of a laterally aligned array of the ends of rectangular pins. Actuating the pins in their longitudinal directions changes the pins’ end positions, and thus, the shape of discretized channel sidewalls.Pin gaps can cause unwanted leakage or adhesion to adjacent pins caused by meniscus forces. To close the pin gaps, we have introduced hydrocarbon-fluoropolymer suspension-based gap filler accompanied by an elastomeric barrier. This reconfigurable microfluidic device can generate strong temporal in-channel displacement flow, or can stop the flow in any region of the channel. This feature will facilitate, on demand, the handling of cells, viscous liquids, gas bubbles, and non-fluids, even if their existence or behavior is unknown at the time of fabrication.
Microfluidic devices – micro-sized devices that control small amounts of liquid and their flows – offer miniaturization of biomedical procedures into a "chip" format with increased portability and, often, affordability. As described in a recent review1, various microfluidic components consisting of spaces and positive features have been developed to realize basic and key fluidic functions such as mixing, separation, particle trapping, or reactions.
While the behavior of many microfluidic devices is determined at the design stage, some kinds of microfluidic devices allow post-fabrication changes of their structure or behavior. Here we refer to this feature as "reconfigurability". The reconfigurability of microfluidic systems generally reduces the time and cost required to design a device, and/or enables customization of the microfluidic layout or functions over time.
Previously described reconfigurable microfluidic devices fall into the following three categories. In the first, deformation of elastomeric channels allows flow rates and directions to be changed during use. To gain reconfigurability, elastomeric channels are deformed by various external and controllable forces such as pneumatic pressure sources2, Braille actuators3, or compression sealing4. In the second, reconfigurable devices rely on modular designs, such as multi-layer fluidic circuits, modular channels with magnetic interconnects, and tubing-based microfluidics5. In the third, the device itself is not reconfigurable, but microdroplet transportation on electrode arrays (often referred to as digital microfluidics)6,7 and hanging drop-based microfluidic devices8 enable on-demand switching of the flow or the route of fluid.
Nonetheless, many of these reconfigurations are limited at the topological and macroscopic levels. For example, many integrated microfluidic devices stop flow or change the flow direction by collapsing microchannels in predefined regions. However, the position and number of regions to be collapsed are not reconfigurable. Although the digital microfluidics has a variety of fluid handling abilities, possible flows should be largely limited by the volume of each droplet. In addition, when cells are cultured in such droplets of cell culture media, extra effort is needed to prevent evaporation and gas dissipation from droplets and avoid osmolality shock and sudden pH change.
To realize channel feature-level reconfigurability, we proposed a microfluidic device with movable sidewalls that consisted of arrays of machine elements to dynamically reconfigure them when in use9. To form a deformable sidewall, small rectangular pins were lined up so that each end of the pins defined a segment of the sidewall. Sliding the pins allowed the deformation of the sidewall which allowed transport or patterning of cells, bubbles, and particles inside the channel. To minimize dead volume and maximize reconfigurability, the distance between the adjacent pins had to be minimized. However, strong capillary action acting on the small gaps between pins connecting the inside and outside of the microchannel causes leakage of any liquid entering the pin gap, causing media evaporation, bacterial or cytotoxic contamination, and eventually cell death. Therefore, we have developed leak-free discretized sidewall-type reconfigurable microfluidic channels that withstand cyclic pin actions and long-term cell culture10.
In this article, we provide a protocol to build microfluidic cell culture device with a discretized sidewall that can be reconfigured following the gradual increase in the cell culture area. Airtightness of the discrete channel sidewalls is tested using fluorescence imaging. The cell-culture compatibility and the ability of cell patterning are evaluated using on-chip cell culture.
This microfluidic system is suitable whenever appropriate channel design cannot be predetermined and must be changed on demand. For example, this system could be used to adjust the channel width and flow rate based on the cell growth or migration, to flow or trap active nematodes or other small objects that behave unexpectedly in the channel, or to accept various raw samples or bioproducts that were not yet conceived at the time of design.
1. Etching of Pins (Figure 2A)
2. Fabrication of Silicone slab with Reservoirs and a Space for Pins.
3. Assembly of the Device with In-Place Fabrication of Gap Filler and Barrier.
4. Evaluation of the Microfluidic Device
The construction of the reconfigurable microchannel is shown in Figure 1. Multiple rectangular pins were placed on a glass substrate and were lined up so that the long side of the pins were in contact. A PDMS sheet with punched holes and a recess of the same depth as the pin height covered the ends of the pins to form the channel inlet/outlet reservoirs, channel ceiling, and another sidewall opposite to the channel wall that consisted of the pins. The region surrounded by pins, a wall (one of the faces of the PDMS sheet), and the glass substrate form one microfluidic channel.
As previously described, the reconfigurability of the proposed microfluidic system is achieved by many small pins placed in parallel with very small but non-zero gaps. The problem in previous reports was the strong flow generated through the gaps by the capillary effect. To overcome this problem, the gaps were first filled with a gap filler. In this protocol, a disperse mixture of viscous hydrocarbon and fluoropolymer powder was used as a gap filler. However, the gap filler itself is also subject to the capillary effect. Therefore, as shown in Figure 1, the resulting reconfigurable microchannel has both hydrocarbon/fluoropolymer gap filler and an elastomeric barrier formed around the outer perimeter of the gap filler. Thinning the middle of the pins is needed to accommodate a sufficient amount of gap filler to ensure the thickness and strength of the elastomeric barrier between two pins.
Figure 2A shows a drawing of a pin that forms a sidewall segment. Stainless steel grade 316L was selected as the material due to its corrosion-resistant and low leaching properties. However, an extra passivation process was required to make pins cell culture compatible. A pin must have a precisely rectangular tip without burrs to successfully form a sidewall segment. In addition, a pin must have a "handle" so that the pin can easily be moved by pushing the handle. Because each pin has a narrow middle, the thickness of elastomer between pins was enough to withstand shear caused by pin movement. Unlike other parts comprising the device, the fabrication of pins, except middle thinning, should be ordered from a company specializing in electrical discharge machining (EDM) because it is one of the most precise and cost-effective methods of machining small parts made of hard metals. Performing middle thinning by etching yourself reduces the cost of machining and the risk of bending or breaking during machining.
To confirm that the gap filler, the elastomeric barrier, and eventually the watertightness of the reconfigurable microchannel function properly, leak detection by fluorescence was used. Figure 3 shows a fluorescence image of the area near the edge of the elastomeric barrier 3 days after the microchannel was filled with water containing fluorescent tracer dye. The fluorescence image shows that the liquid filling the channel reached a depth of about 200 µm from the visible edge of the elastomeric barrier. However, the liquid did not reach the gap filler. Additionally, no leakage of gap filler through the elastomeric barrier was observed. This observation indicates that the tight fit between the narrow middle of the pins and elastomeric barrier prevented the migration of liquid through the gaps.
Finally, we performed long-term cell culture with the culture area adapted by gradually expanding the sidewall of the reconfigurable microfluidic device as shown in Figure 4A. At 0 d, a small number of cells were confined within a space equal to one pin-width and other cells were aspirated. At 2 d, the cells were attached to the bottom surface and started proliferating. Two pins were retracted so that all cells were clearly visible, although the confluency was still low. At 5 d, the cells continued to proliferate and the confluency increased. At 6 and 9 d, two other pins were retracted to keep the cells underconfluent. The effect of gradual expansion of the culture area is shown in Figure 4B. There were sudden changes in the cell density on the day the pin(s) were retracted. However, the growth rate of the cell count was kept constant, while that seen in typical cell culture is exponential.
Figure 1: Reconfigurable microfluidic device with one pin-discretized sidewall. (A) Parts and construction of a reconfigurable microfluidic device. The device has one straight channel with one sidewall formed by the ends of 10 stainless steel pins inserted into PDMS/glass microchannel features. Gap filler and an elastomeric barrier prevents liquid from leaking through the pin gaps. Coverglasses, gap filler, and the elastomer barrier are fixed to a polymethylmethacrylate (PMMA) base. (B) Automated pin manipulator. An end effector made from a sheet of metal is fixed to a 3-axis desktop robot. To move one pin, the end effector pushes its vertical end. Pins with different lengths are placed at an interval of three times the pin width. The interval ensures that the end effector mates one pin at one time with enough clearance. Please click here to view a larger version of this figure.
Figure 2: Mechanical drawing of machined parts used in the protocol. Units are in millimeters; R indicates a radius dimension; the square symbol (□) indicates square features; t indicates thickness. (A) A 316L stainless steel pin as a part of the sidewall. Pins can be ordered and machined as described. Thinning of the pin middle to make dog bone-like shapes is not reflected in this drawing because this was not ordered as part of the machining but was performed as part of the protocol. (B) A polymethylmethacrylate (PMMA) base that holds the coverglasses, gap filler and elastomeric barrier in place against pin movement. (C) An etching dish that is used to etch the middle of pins. To build an etching dish, four pieces of glass are bonded using silicone adhesive. A contour pattern of silicone adhesive is drawn on the dish followed by placement of the pins on the dish as shown in the drawing. Please click here to view a larger version of this figure.
Figure 3: Fluorescence detection of leakage from a reconfigurable microchannel through pin gaps. Fluorescence image of green fluorescent dye filling the reconfigurable microchannel is overlaid on a phase contrast image of the seal structure, which consists of a gap filler (opaque) and elastomeric barrier (translucent). An edge of the elastomer barrier is visible as meniscus-like features and is denoted by an upper dotted line; the interface between elastomer barrier and gap filler is shown as meniscus-like features that contact the black area and is indicated by the lower dotted line. Please click here to view a larger version of this figure.
Figure 4: Progressive and continuous cell growth with variable cell culture area in a reconfigurable microchannel. (A) COS-7 cell growth in a cell culture area confined by moving sidewalls. (B) Growth curve and time evolution of the density of COS-7 cells confined in variable-size culture areas in the reconfigurable microchannel shown in A). Three vertical arrows denote expansion of the cell culture area at 2, 5, and 6 d, respectively. In addition to cell count, cell densities are shown for the same culture areas, fitted individually to each exponential growth curve, and used to estimate the local doubling time (td [h]) shown in the frames. Please click here to view a larger version of this figure.
The pin-discretized microchannel is a full-featured microfluidic channel, and we believe that it has obviously high reconfigurability in channel shape compared with any existing microfluidic channels. The protocol we provided here will enable microfluidic devices capable of cell culture with gradually expanding cell culture surface area to keep the cultures under confluency for a long duration. The device will also provide in-channel patterning of cells without patterning proteins on the substrate beforehand or any other consideration at the time of design or fabrication. In addition, this reconfigurable microfluidic device easily generates strong in-channel displacement flow, which would help implement handling of such difficult-to-flow materials that very few existing microfluidic devices can handle. This means that the interaction between the cells and other microorganisms, gases, and other non-fluids can be evaluated using this device without large modifications in device design.
We have considered applying Laplace pressure or hydrostatic pressure to one inlet of the channel as external flow control methods. We do not recommend pushing liquid at a dead end because it will generate flow toward the air vent channel through the gaps between pins and the ceiling/floor of the channel. Many fluid operations do not require such pin operations. For example, mixing can be accomplished by mashing liquid by one pin (i.e., moving only one pin back and forth several times).
The most critical parts of the device are the pins. Precision in length, parallelism, perpendicularity and surface quality are required for the pins, as they must form a microchannel, must move smoothly, and must guide the movement of adjacent pins. Therefore, we recommend that the pins should be ordered from a company that specializes in precision machining by submitting a drawing similar to Figure 2A. There may be companies that require additional geometric dimensioning and explicit surface roughness directions. However, the pins are reusable if they are handled with care and occasionally passivated with nitric acid.
The elastomeric barrier is another critical feature, and its formation is the most critical step in the fabrication processes of the device. A precisely machined base will be needed to obtain repeatable and reliable results. Placing the pins on the uncured barrier is also a critical step. The pins should be kept well aligned, and embedded in the gap filler and the barrier without air bubbles. These steps prevent leakage through the pins, which is a common problem with this microfluidic device.
Other common issues in using this device are a) frictionally restrained pins, and b) cell death, and low growth rate. Possible causes for these in a) include uneven (tapered or wavy) etching of the pin middle, poor quality of the etched surface, and dimensional misfit between the pin tip height and the height of the photoresist layer on a mold for silicone slabs. Adjustment of etchant formulation, temperature, and agitation may help improve the pin movement. In addition, trial fitting without using wax or adhesive will provide hints to solve the problem. Possible factors in b) are insufficient passivation of the pins, errors in selection of adhesives for elastomeric barriers, and incomplete curing of the adhesives. Some cells may require coating inside the microchannel with fibronectin or other proteins or polymers that promote cell adhesion. In addition, optimization in cell culture practice such as trypsinization and centrifugation will decrease dead cells in the microchannel.
One of the limitations of the presented fabrication protocol is that only one of the sidewalls is discretized. The reconfigurability of the channel will further improve if the both sidewalls are built by pin arrays. Although it requires double the amount of pins and longer fabrication steps, this is a technically viable option.
The authors have nothing to disclose.
This research was supported by KAKENHI (20800048, 23700543).
Oven | Yonezawa | MI-100 | |
10% Nitric Acid | Wako Chemicals | 149-06845 | |
Stainless steel pins | Micro Giken | N/A | 0.3 mm crosssection, Grade 316L stainless steel, wire-cut EDM |
Mold release agent | Fluoro Technology | FG-5093SH | |
Polydimethylsiloxane (PDMS) | Shin-Etsu Chemicals | KE-106 | |
Negative epoxy photoresist | Nippon Kayaku | SU-8 3050 | |
Coverglasses (Rectangular) | Matsunami Glass | 26 x 60mm No.4 | |
Acetone | Kanto Chemicals | 01060-79 | |
Glass slides (Large) | Matsunami Glass | 76 x 52mm No.1 | |
Silicone adhesive | Shin-Etsu Chemicals | KE-41 | |
White petrolatum | Nikko Rica | Sun White P-1 | |
Polytetrafluoroethylene (PTFE) powder | Power House Accele | Microfluon II | |
Clear acrylic plate (3 mm-thick) | Various | N/A | |
Pneumatic dispenser | Musashi Engineering | ML-5000XII | |
Hydrochloric acid | Kanto Chemicals | 180768-00 | |
Computer numerical control (CNC) mill | Pro Spec Tools | PSF240-CNC | |
End mill (4 mm diameter) | Mitsubishi Materials | MS2MSD0400 | |
End mill (1 mm diameter) | Mitsubishi Materials | MS2MSD0100 | |
Adhesive (chemical-resistant and low viscosity ) | Cotronics | Duralco 4460 | |
Borisilicate glass vials | Various | To prepare HNO3+HCl solution (Aqua regia). Always select borosilicate glass. | |
Sodium bicarbonate | Kanto Chemicals | 37116-00 | |
Ultrasonic cleaner | AS ONE | AS12GTU | |
Ultrasonic drill | Shinoda Tools | SOM-121 | Used as a ultrasonic homogenizer. |
Spin coater | Active | ACT-220DII | |
Hotplate | AS ONE | ND-1 | |
Photoplotted film (12,700 dpi) | Unno Giken | N/A | Negative image of the recess at the bottom of a PDMS slab are plotted. |
2-methoxy-1-methylethyl acetate | Wako Chemicals | 130-10505 | |
UV spot light source | Hamamatsu | L8327 | Ultraviolet source |
Nitrogen | Various | N/A | |
Vacuum desiccator and pump | AS ONE | MVD-100, GM-20S | |
Scalpels | Various | No.11 | |
Biopsy punches (1.0mm and 2.0mm) | Kai Medical | BP-10F(1.0m), BP-20F(2.0mm) | |
Glass engraving pen | Various | N/A | |
Cleaning solution | Tama Chemicals | TMSC | Dilute 1:100 with deionized water |
Sputter coater | San-yu Electron | SC-708 | For plasma bonding. |
Dispenser syringe (5 ml) | Musashi Engineering | PSY-5E | |
Plunger | Musashi Engineering | FLP-5E | |
Blunt needle (21G) | Musashi Engineering | PN-21G-B | |
Adapter tube | Musashi Engineering | AT-5E | |
Fermenter | Japan Kneader | PF100 | |
Green fluorescent dye (Alexa Fluor 488 carboxylic acid) | Thermo Fisher | A33077 | |
Large plastic dish | Greiner bio-one | 688161 | |
Absorbent paper | Asahi Kasei | BEMCOT M-1 | |
Inverted microscope | Leica | DMi8 | |
Microscope camera | Qimaging | Retiga 2000R | |
Dulbecco modified Eagle medium (DMEM) | GE Health Care | SH30021.01 | |
Antibiotic-antimycotic solution | Thermo Fisher | 15240-062 | |
Trypsin/EDTA solution | Thermo Fisher | 25200-056 | |
Phosphate buffered saline (PBS) | GE Health Care | SH30256.01 | |
Fetal bovine serum (FBS) | Biowest | S1820 | |
Cell counter | FPI | OC-C-S02 | |
Cell culture vessel | VIOLAMO | VTC-D100 | |
15 ml conical tube | Corning | 352095 | |
Shop microscope | PEAK | 2034-20 | |
Hand sprayer | FURUPLA | No.3530 | |
Coverglasses (Rectangular) | Matsunami Glass | 10 x 20mm No.4 | |
CAD/CAM software | Autodesk | Inventor HSM | |
Nitrogen gas pressure regulator | AS ONE | GF1-2506-RN-V | Set to 0.1 MPa |