The goal of this protocol is to provide an animal model of cochlear implantation, which can be used to address a multitude of research questions. Potential applications include the evaluation of pharmaceutical interventions or electrical stimulation for beneficial effects on hearing thresholds or electrode impedances.
Cochlear implants are highly efficient devices that can restore hearing in subjects with profound hearing loss. Due to improved speech perception outcomes, candidacy criteria have been expanded over the last few decades. This includes patients with substantial residual hearing that benefit from electrical and acoustical stimulation of the same ear, which makes hearing preservation during cochlear implantation an important issue. Electrode impedances and the related issue of energy consumption is another major research field, as progress in this area could pave the way for fully implantable auditory prostheses. To address these issues in a systematic way, adequate animal models are essential. Therefore, the goal of this protocol is to provide an animal model of cochlear implantation, which can be used to address various research questions. Due to its large tympanic bulla, which allows easy surgical access to the inner ear, as well as its hearing range which is relatively similar to the hearing range of humans, the guinea pig is a commonly used species in auditory research. Cochlear implantation in the guinea pig is performed via a retroauricular approach. Through the bullostomy a cochleostomy is drilled and the cochlear implant electrode is inserted into the scala tympani. This electrode can then be used for electrical stimulation, determination of electrode impedances and the measurement of compound action potentials of the auditory nerve. In addition to these applications, cochlear implant electrodes can also be used as drug delivery devices, if a topical delivery of pharmaceutical agents to the cells or fluids of the inner ear is intended.
More than 500 million people worldwide suffer from hearing loss.1 Impaired hearing has been linked to a higher rate of depression, lower self-esteem and lower feelings of self-worth, which all lead to reduced quality of life.2 While hearing aids are an adequate way to restore sensory function in cases of moderate hearing loss, the most effective treatment modality for patients suffering from profound hearing loss is the cochlear implant (CI). Due to the excellent outcomes with respect to speech perception, candidacy criteria for cochlear implantation now also includes patients who have substantial residual hearing in the low frequency region, but do not benefit from hearing aids.3 Since these patients can use combined electric and acoustic stimulation in the implanted ear, hearing preservation has become a major issue for CI surgeons. During cochlear implantation, an electrode array is inserted into the scala tympani of the cochlea, where it electrically stimulates the auditory nerve.4 The electrode insertion trauma poses a risk to residual hearing and induces fibrosis, which increases electrode impedances and battery consumption of the implant. Thus, models to study pharmaceutical interventions that can reduce the hearing loss and fibrosis caused by the insertion of the electrode are essential.
The guinea pig is a suitable and convenient animal model for CIs, because of the easier and more reproducible surgical access to the inner ear as compared to gerbils, rats or mice.5,6,7,8 Furthermore, the hearing range of this species is relatively comparable to human hearing.9 Larger species like cats or monkeys, which have been used to address specific research questions related to CIs, do not represent a reasonable choice for most CI studies due to both ethical and financial considerations.10,11
In summary, the guinea pig is a reliable and relatively cost-efficient model to evaluate the effects of pharmacological interventions in the setting of cochlear implantation.
All animal experiments were approved by the local animal welfare committee and the Austrian Federal Ministry for Science, Research and Economy.
1. Prepare the Equipment and Setup Required for Surgery
2. Anesthesia, Medication and Animal Preparation
3. Cochlear Implantation
4. Postoperative Care
Usually surgical wounds heal fast and without complications in the guinea pig model and the contacts for postoperative electrophysiological measurements remain easily accessible at the vertex of the animal (Figure 3). Figure 4 shows the pre- and postoperative click-CAP measurement of a representative animal. Electrode insertion resulted in a threshold shift of 16 decibels (dB) (Figures 4A and 4B). Figure 4C illustrates the pre- and postoperative frequency-specific CAP thresholds of the same animal. CAP thresholds are almost unchanged in the low frequencies, whereas a threshold shift of approximately 25 to 30 dB is achieved in the high frequency area, starting at 8 kHz.
Electrode insertion can cause trauma to the inner ear. In addition to the acute surgical trauma, the foreign body reaction to the electrode negatively impacts cochlear implant performance. Figure 5 demonstrates the cochleae of guinea pigs after CI insertion and different histological procedures. In Figure 5A the electrode, which is positioned correctly in the scala tympani, was left in situ, whereas in Figure 5B the electrode was removed before histological workup. In Figure 5A almost no foreign body reaction is visible, whereas in Figure 5B a large area of the scala tympani is filled with fibrotic tissue. Figure 5C depicts the fracture of the osseous spiral lamina due to CI electrode insertion, which also caused a loss of spiral ganglion cells in this animal. Such fractures can explain higher than expected threshold shifts in some animals.
Figure 1: Round window area with gold wire in situ. An asterisk marks the round window, an x the basal turn of the cochlea. The gold wire is marked by an arrow. Scale bar 2 mm. Please click here to view a larger version of this figure.
Figure 2: Guinea pig cochlear implant electrode. The electrode with two contacts is inserted for 4 mm. The diameter of the electrode is tapered from 0.3 mm at the tip to 0.5 mm. Lines indicate 0.5 mm. Please click here to view a larger version of this figure.
Figure 3: Guinea pig approximately two weeks after cochlear implantation. The CI electrode is in situ and the contacts for electrophysiological measurements are easily accessible at the vertex of the animal. Please click here to view a larger version of this figure.
Figure 4: Representative CAP thresholds (A) Preoperative click CAP threshold of a representative animal. (B) Postoperative click CAP threshold of the same animal, exhibiting a threshold shift of 16 dB. Lines indicate 10 dB. (C) Pre- and postoperative frequency-specific CAP thresholds. While low frequencies are almost unchanged, a threshold shift of 25-30 dB can be observed in the frequency range of 8 to 32 kHz. Please click here to view a larger version of this figure.
Figure 5: Potential local consequences of CI electrode insertion. (A) Micrograph of a basal turn of a guinea pig cochlea with the CI electrode in situ (#) and only minimal foreign body reaction. Histological analysis was performed using a grinding and polishing technique after resin embedding and Giemsa staining.15 Scalebar 100 µm (B) Micrograph of the tympanic duct of the upper basal turn of the cochlea with visible tissue response leaving a canal after removal of the CI electrode (#). Scalebar 100 µm (C) Lower basal turn of cochlea with fractured osseous spiral lamina (bold arrow) and adjacent tissue response: (i) loss of spiral ganglion cells (arrow) in Rosenthal`s canal (ii) fibrosis and osteoneogenesis in vestibular duct (●), and (iii) loss of the organ of Corti (*). Drilling-hole for insertion of CI (○) with adjacent osteoneogenesis. Scalebar 500 µm. Figures 5B and 5C were stained with hematoxylin (blue) & eosin (red). Please click here to view a larger version of this figure.
The presented protocol describes how to perform cochlear implantation in the guinea pig model. This protocol can be used to evaluate different interventions for their effects on residual hearing and foreign body reaction to the CI electrode. Several precautions should be taken to achieve a high reproducibility and accuracy of the experiments.
Baseline hearing thresholds of all guinea pigs should be measured preoperatively using e.g. auditory brainstem responses. Some of the commercially available guinea pigs exhibit a relevant hearing loss and should therefore not be included in the experimental cohort. Depending on the length of the surgery and protocol this evaluation can be performed either immediately before surgery or a few days before cochlear implantation, giving the animal sufficient time to recover from anesthesia.
When performing surgery under general anesthesia in a spontaneously breathing animal, speed is important. Therefore, meticulous preparation before surgery is essential, as is the choice of the anesthetic protocol. The use of ketamine, medetomidine, midazolam and fentanyl in combination with local anesthesia results in a sufficient anesthesia and analgesia, while at the same time the animal continues to breathe spontaneously. Compared to the often-described use of ketamine and xylazine, this regimen results in better analgesia and reduced perioperative morbidity and mortality. It is important to have all instruments and medications (including a booster of the anesthetics) readily available before putting the animal to sleep.
Due to position changes of the animals during the surgery (changing from prone position to sideward position and back), there is a risk of aspiration of the stomach content in to the lungs. For this reason, the protocol also includes the application of a stomach tube, which is a fast and easy way to protect the animal from aspiration and reduce the perioperative mortality.
To maintain sterility during re-positioning, the areas where the animal is touched need to be covered by sterile drapes, gloves need to be changed thereafter or re-positioning needs to be done by another individual that is not sterile.
O2-saturation monitoring is also of utmost importance during the surgery. The positioning of the head required for visualization of the promontory and round window niche can cause an obstruction of the airway, which can easily be handled when identified early enough.
Usually the animals lose a great amount of body fluids (e.g. blood, extra cellular fluid, urine) during the surgery. Therefore, the fluid substitution protocol introduced in this manuscript represents a well-tolerated method to stabilize the hemodynamics of the animals and supports their fast recovery from anesthesia.
In order to avoid mistakes when performing audiometrical measurements, it is recommended to connect the same pin of the connector to a specific electrode during each surgery.
One limitation of this method is the relatively high variability in postoperative hearing threshold shifts, which often do not correlate well with the surgeon's perception. Even though this variability in outcomes resembles the situation in human CI recipients with residual hearing, it is not fully understood what the causes of the variable results are.16,17,18 In general, the variability decreases with time and the experience of the surgeon. It is important to avoid excessive forces when inserting the electrode, which can be achieved by a slow insertion speed. Because the careful insertion of a CI electrode can result in only very limited hearing loss, the presented protocol describes a repeated insertion of the electrode, which causes a higher and more predictable hearing loss. This hearing loss is most pronounced in the high frequency area, between 16 and 32 kHz. As the intracochlear trauma depends on the insertion depth, the morphology of the cochlea and the approach (cochleostomy versus round window insertion) need to be taken into account. Insertion of the CI electrode through the round window membrane, usually performed in human hearing preservation cochlear implantation, has also been used in the guinea pig model.19 Because the round window membrane is hidden in the guinea pig and electrode insertion through the round window membrane results in an unfavorable insertion angle, drilling a cochleostomy leads to more predictable hearing threshold shifts. This protocol proposes the use of a scalpel instead of a drill for the opening of the tympanic bulla, because this results in a reduced noise exposure of the ear to be implanted. A histological evaluation of the inner ears addressing the foreign body reaction to the electrode, the amount of hair cells and spiral ganglion cells as well as trauma to structures like the osseous spiral lamina and electrode translocation rates should be performed in all implanted ears, as these results facilitate better understanding of the functional results measured.12,20
The authors have nothing to disclose.
The authors want to thank Sandra Peiritsch for the care of the animals and Noelani Peet for medical writing. The financial support by the Austrian Science Fund (FWF grant P 24260-B19) and MED-EL Austria is gratefully acknowledged.
Scale | |||
Oxygen insufflator | |||
Shaver | |||
Sucker | |||
Povidone Iodine Solution | |||
Alcohol | |||
Laryngoscope | |||
Stomach tube | Fr 06, Lg 80 cm | ||
Surgical binocular microscope | |||
Drill | |||
0.5 mm diamond burr | |||
1 mm diamond burr | |||
Heating plate | |||
Pulse oximeter | |||
Tissue glue | |||
Dental cement powder | |||
Fluid for dental cement powder | |||
Bipolar cautery | |||
Gauze compress | |||
Cotton bud | |||
Cement mixing bowl | |||
Teflon insulated gold wire | 99.99 % gold, diameter: 0.125 mm, isolation: 0,016 mm, PTFE (Polytetrafluoroethylen) | ||
Scalpel with blade No. 10 | |||
Scalpel with blade No. 15 | |||
Scissors | |||
Mosquito forceps | |||
Dressing forceps | |||
Tissue forceps | |||
Delicate dressing forceps 2X | |||
Micro forceps | |||
Screw driver | |||
Stainless steel screws | diameter: 1 mm | ||
Retractor | |||
Needle probe | |||
Spatula | |||
Needle holder | |||
5-0 absorbable sutures | |||
Needle 23G | |||
Needle 27G | |||
Medetomidine 1 mg/mL | 0.36 mg/kg | ||
Midazolam g mg/mL | 1.2 mg/kg | ||
Fentanyl 50 µg/mL | 0.036 mg/kg | ||
Ketamine 100 mg/mL | 12 mg/kg | ||
Lidocaine (local anesthesia) | 4 mg/kg | ||
Atipamezole 5 mg/mL | 1 mg/kg | ||
Flumazenil 0.1 mg/mL | 0.1 mg/kg | ||
Enrofloxacin 100 mg/mL | 7 mg/kg | ||
Buprenorphin 0.3 mg/mL | 0.05 mg/kg | ||
Physiological Saline (at body temperature) | 12.5 mL/Kg (pre-surgery) | ||
Glucose 5 % (preoperative, at body temperature) | 12.5 mL/Kg | ||
Physiological Saline (at body temperature) | 25 mL/kg (post-surgery) |