Here, we present a protocol to mass-produce gene-silencing murine NK cells by using a feeder-free differentiation system for mechanistic study in vitro and in vivo.
Natural killer (NK) cells belong to the innate immune system and are a first-line anti-cancer immune defense; however, they are suppressed in the tumor microenvironment and the underlying mechanism is still largely unknown. The lack of a consistent and reliable source of NK cells limits the research progress of NK cell immunity. Here, we report an in vitro system that can provide high quality and quantity of bone marrow-derived murine NK cells under a feeder-free condition. More importantly, we also demonstrate that siRNA-mediated gene silencing successfully inhibits the E4bp4-dependent NK cell maturation by using this system. Thus, this novel in vitro NK cell differentiating system is a biomaterial solution for immunity research.
Cancer progression is largely dependent on the tumor microenvironment1,2, including host-derived immunocytes, e.g., NK cells. Several studies demonstrated that intratumoral NK cells are negatively correlated with the tumor progression3,4. In addition, clinical studies showed that NK cell adoptive therapy is a possible strategy for cancer5,6,7,8,9. NK cell-based cancer immunotherapy was recently suggested as a therapeutic option for solid tumors, but challenges exist due to the secretion of immunosuppressive cytokines and downregulation of activating ligands in the microenvironment of solid tumors10,11. Transforming growth factor-β (TGF-β) has been suggested to play a suppressive role in carcinogenesis, but paradoxically cancer cells also produce TGF-β1 to support the tumor development12,13,14,15. TGF-β signaling can suppress the cytolytic activity of NK cells via down-regulating interferon responsiveness and CD16-mediated interferon-gamma (IFN-γ) production in vitro16,17,18.
Although disruption of TGF-β signaling in the tumor microenvironment may be a possible way for eliminating cancers, completely blocking TGF-β signaling will cause autoimmune diseases due to its anti-inflammatory function, as evidenced by the development of adverse side effects including systemic inflammation, cardiovascular defects, and autoimmunity in mouse models19. Thus, understanding the working mechanism of TGF-β-mediated immunosuppression will lead to the identification of an accessible therapeutic target for treating cancer.
To elucidate the molecular events necessary for NK cell development, Williams et al. established an in vitro system for differentiating murine bone marrow hematopoietic stem cells into NK cells20. This system largely facilitates the mechanistic study of NK cell development, including the identification of novel progenitors of NK cells21. However, the bone marrow progenitors should be cultured in the system with supporting OP9 stromal cells as a feeder layer20,21, and this heterogeneous cell population largely limits the further application of gene-disrupting tools (e.g., siRNA-mediated gene silencing) specifically applied to the differentiating NK cells.
Here, we describe a feeder-free system that has been developed by further modifying the in vitro system of Williams et al20. In our system, the OP9 stromal feeder cells are not required, and instead OP9 conditional medium is used without affecting the differentiation of NK cells in vitro, and this recently lead us to uncover that TGF-β is able to promote cancer progression via suppressing E4bp4-dependent NK cell development in the tumor microenvironment22. This novel system successfully provides a background-free method for elucidating the molecular mechanism of NK cell development under specific conditions (e.g., high TGF- β1, siRNA-mediated gene silencing, etc.) in vitro.
The protocol for obtaining and differentiating bone marrow-derived NK cells (BM-NK) is based on previously published methods20,21,22. All procedures with mice have been approved by the Animal Ethics Experimental Committee (AEEC) at the Chinese University of Hong Kong.
1. Preparation of OP9 Conditional Medium
2. Isolation of Mouse Bone Marrow Cells
3. siRNA-mediated Gene Silencing of Differentiating NK Cells
4. Analysis of NK Cell Differentiation Using Flow Cytometry
Representative results are obtained following the described protocol. Total bone marrow suspension cells were cultivated under the feeder-free differentiation system for 11 days; significant increase in proliferation rate was observed by day 7 compared with the number of total cells on day 0 (Figure 1A). Mature NK cells with high nuclear to cytoplasmic ratio and granule-rich cytoplasm morphology were found by day 6 in the system (Figure 1B).
In order to elucidate the regulatory effect of TGF-β1/Smad3 signaling in NK cell differentiation, bone marrow cells were transfected with siRNA against E4bp4 mRNA (siE4bp4, which effectively suppresses E4bp4 mRNA level as shown in Figure 2) or nonsense control on day 0 and day 4 in the feeder-cell free system. The differentiating cells were cultured in the system with or without Smad3 inhibitor SIS3 for 6 days. Flow analysis detected that knockdown of E4bp4 largely suppressed the NK cell maturation as shown by the reduction in CD244+ve NKp46-ve immature NK cells compared with NC-transfected control, whereas inhibition of TGF-β1/Smad3 activation significantly rescues the siRNA-mediated suppression of NK cell maturation compared with the siE4BP4-transfected group (Figure 3).
Figure 1. Image of bone marrow-derived NK cells from the feeder-free system. (A) Growth curve of bone marrow cells undergoing NK cell differentiation in the system until Day 11, obtained by cell counting. (B) Mature NK cells with high nuclear to cytoplasmic ratio and granule-rich cytoplasm morphology appear by day 6, as indicated by arrows. Magnification 200x, scale bar 50 µm. Data represent mean ± SEM for 3 independent experiments, ***p < 0.01. Please click here to view a larger version of this figure.
Figure 2. Effect of siRNA-mediated gene silencing on the bone marrow cells undergoing NK cell differentiation on day 6. The differentiating cells were transfected with nonsense control (NC) or siRNA targeting murine E4bp4 mRNA (siE4bp4) on day 0 and day 4. Real-time PCR shows that mRNA expression level of E4bp4 was significantly reduced in si-E4bp4 treated NK cells on day 6 compared with the NC group. Data represent mean ± SEM for 3 independent experiments, **p < 0.05. Please click here to view a larger version of this figure.
Figure 3. Silencing of E4bp4 inhibits differentiation of murine bone marrow-derived NK cells in a TGF-β1/Smad3-dependent manner. (A) Flow cytometry analysis shows that knockdown of E4bp4 largely decreases the production of immature (CD244+ve NKp46-ve) NK cells on day 6 compared with the nonsense control (NC) group by using the feeder-free system in vitro, which can be significantly rescued by suppressing TGF- β1/Smad3 activation with 1 µM of Smad3 inhibitor SIS3. (B) Quantification of the flow analysis results, ***p < 0.01 compared with NC; ###p < 0.01 compared with siE4BP4-transfected group. Representative data of 3 independent experiments are shown. Please click here to view a larger version of this figure.
Supplementary Figure 1. Gating strategy for flow analysis of NK cell marker expression in total differentiating cells on day 6. Please click here to view a larger version of this figure.
In the present work, we have described a novel method for producing bone marrow-derived murine NK cells in vitro. The cell feeder in the original system21,22 is successfully replaced by the conditional medium of OP9 cells, which largely increased the stability of the differentiation system. In addition, the system can produce high quantity and purity of mature NK cells for in vitro as well as in vivo assays, which can facilitate the mechanistic study as well as translational research of NK cells in human diseases.
The described method has been used for investigating the regulatory role of TGF-β1 signaling in NK cell suppression during cancer development23. As there was no influence from the feeder cells, the efficiency of siRNA-mediated gene knockdown as well as inhibitor-mediated inhibition are largely improved. The absence of the feeder cells OP9 allows us to clearly demonstrate the biological function of Smad3 in the E4BP4-mediated NK cell development, by showing the knockdown or inhibition of target genes in vitro23.
More importantly, this system can be further utilized for producing a large amount of genetically modified murine NK cells for in vivo assays. For example, we have produced at least 1 x 108 mature NK cells from the bone marrow cells of a single mouse by this system, and the NK cells with knockdown of a specific gene were infused into tumor-bearing NOD/SCID mouse model to demonstrate the difference in cancer-killing effects in vivo23. Indeed, other modifications can be done on the NK cells in this system, such as viral-mediated gene overexpression, cell staining, etc.
However, it should be noted that a maximum 70% of mature NK cells can be produced from the system on day 9 (data not shown), which is similar to the result of the cultured system with OP9 stromal shown by Williams et al.21 To overcome this limitation, the mixed NK cells can be further purified with a flow sorting machine, as well as commercial NK cell isolation kits in order to isolate the desired population.
In conclusion, a new method for differentiating NK cells from murine bone marrow cells is developed. This novel system can provide an option for obtaining high purity and quantity of mature NK cells for the study of immunity in human diseases.
The authors have nothing to disclose.
This study was supported by the Research Grants Council of Hong Kong (GRF 468513, CUHK3/CRF/12R) and the Innovation and Technology Fund of Hong Kong (ITS/227/15, ITS InP/164/16, ITS-InP/242/16), Direct Grant for Research-CUHK (2016.035), and Hong Kong Scholar Program.
H.-Y.L. designed and supervised all experiments and contributed to manuscript preparation. P.M.-K.T. performed experiments, analyzed data and contributed to manuscript preparation. P.C.-T. T., J.Y.-F.C., J.S.-C.,H., Q.-M.W., and G.-Y.L. collected animal samples and participated in animal experiments. J.S., X.-R.H., and K.-F.T. contributed to manuscript preparation.
OP9 cell line | ATCC | ATCC® CRL-2749™ | |
MEM α, no nucleosides | Gibco | 22561021 | |
Fetal Bovine Serum | Gibco | 10500064 | |
PBS, pH 7.4 | Gibco | 10010049 | |
Recombinant Murine IL-7 | PEPROTECH | 217-17 | |
Recombinant Murine SCF | PEPROTECH | 250-03 | |
Recombinant Murine Flt3-Ligand | PEPROTECH | 250-31L | |
Recombinant Murine IL-2 | PEPROTECH | 212-12 | |
Lipofectamin RNAiMAX Transfection Reagent | Invitrogen | 1377815 | |
IC Fixation Buffer | eBioscience | 00-8222-49 | |
Flow Cytometry Staining Buffer | eBioscience | 00-4222-26 | |
PE-conjugated anti-mouse CD244 | eBioscience | 12-2441-83 | |
Cy3-conjugated anti-mouse NKp46 | Bioss | bs-2417R-cy3 | |
Nonsense control (NC) | Ribobio | siN05815122147 | |
siRNA against mouse E4BP4 mRNA | Ribobio | N/A | 5′-GAUGAGGGUGUA GUGGGCAAGUCUU-3′ |