Heterogeneous distribution of HER2-positive cells can be observed in a subset of breast cancers and generates clinical dilemmas. Here, we introduce a reliable and cost-effective protocol to define, quantify, and compare HER2 intra-tumor genetic heterogeneity in a large series of heterogeneously processed breast cancers.
Targeted therapies against the human epidermal growth factor receptor 2 (HER2) have radically changed the outcome of patients with HER2-positive breast cancers. However, a minority of cases displays a heterogeneous distribution of HER2-positive cells, which generates major clinical challenges. To date, no reliable and standardized protocols for the characterization and quantification of HER2 heterogeneous gene amplification in large cohorts have been proposed. Here, we present a high-throughput methodology to simultaneously assess the HER2 status across different topographic areas of multiple breast cancers. In particular, we illustrate the laboratory procedure to construct enhanced tissue microarrays (TMAs) incorporating a targeted mapping of the tumors. All TMA parameters have been specifically optimized for the silver in situ hybridization (SISH) of formalin-fixed paraffin-embedded (FFPE) breast tissues. Immunohistochemical analysis of the prognostic and predictive biomarkers (i.e., ER, PR, Ki67, and HER2) should be performed using automated procedures. A customized SISH protocol has been implemented to allow a high-quality molecular analysis across multiple tissues that underwent different fixation, processing, and storage procedures. In this study, we provide a proof-of-principle that specific DNA sequences could be localized simultaneously in distinct topographic areas of multiple and heterogeneously processed breast cancers using an efficient and cost-effective method.
HER2 is a proto-oncogene that is overexpressed and amplified in 15 – 30% of all invasive breast cancers1,2. HER2 overexpression is inferred by the presence of >10% cells with strong membrane immunohistochemical (IHC) staining (3+), while the gene amplification can be assessed when either the HER2/centromere ratio is ≥2 or the gene copy number is ≥6, on counting at least 20 cells by in situ hybridization (ISH)3.
Intra-tumor genetic heterogeneity has been widely described in breast cancers, being a potentially adverse contributor to biomarkers evaluation and treatments response4. According to the College of American Pathologists (CAP), HER2 heterogeneity exists if HER2 is amplified in >5% and <50% of infiltrating tumor cells5. Regrettably, the actual incidence of HER2 spatial heterogeneity in breast cancers remains a subject of controversy among pathologists, with some authors maintaining that it is an exceedingly rare event, and others suggesting that up to 40% of cases are HER2-heterogeneous1,5,6,7,8,9,10. Despite the biological mechanisms that underpin this condition are not yet fully clarified, the prognostic and clinical impacts of intra-tumor HER2 heterogeneity are crucial for breast cancer patients11.
Recently, bright-field molecular techniques, such as chromogenic ISH (CISH) and silver ISH (SISH), have emerged as reliable methods to detect HER2 heterogeneity in FFPE tissues, with some advantages compared to fluorescent ISH (FISH)12. Regrettably, the bulk analysis of single cases remains impractical in large-cohort research studies. Several groups have suggested that the combination of histochemistry, IHC, and ISH with TMA technologies could represent a valuable strategy in the study of cancer biology13,14,15,16. With this widely adopted method, tissue samples from different patients can be analyzed concurrently, minimizing the tissue and reagents employed and thereby fostering the uniform analysis of a large series of cases14. However, no protocols are available for the simultaneous high-throughput molecular characterization of multiple tissue samples that underwent different processing in terms of reagents, fixation times, and conservation methods employed, such as archival blocks.
Given the prognostic and clinical implications of HER2 spatial heterogeneity in breast cancers, we developed an integrated molecular platform to assess it in large series of heterogeneously processed cases. Here, we portray the laboratory strategies to generate and analyze the intra-tumor heterogeneity of HER2 amplification in high-yield TMAs of breast cancer by means of SISH. The following protocol has been developed for tumors measuring >5 mm (>pT1b according to the TNM 2017)17. For smaller lesions, we recommend performing the analysis on full-face serial sections. Our procedure allows for the simultaneous IHC and SISH analysis of up to 30 breast cancers, encompassing a mean of 6 distinct areas (range 4 – 8) for each case. Altogether, 180 tissue cores of 1 mm in diameter, with 500 µm between the cores, and 2 mm between the grid and edges will be generated for each TMA block.
This study was approved by the Institutional Review Boards from IRCCS Ca' Granda Foundation, Policlinico Hospital, Milan, Italy.
1. Selection of Patients and Tissue Specimens
2. Design and Construct TMAs Based on the Kononen Technique
3. Histochemical and Immunohistochemical Analyses
4. SISH Analysis of HER2
Overall, 444 invasive breast cancers were incorporated in 15 TMAs specifically optimized for ISH analyses. Among the 2,664 spots sampled, 2,651 (99.5%) were representative of the previously selected areas and therefore considered amenable for subsequent analyses. Intra-tumor heterogeneity was determined by means of IHC and SIH, with a particular focus on the heterogeneous distributions of HER2-positive clones in the distinct topographic areas of the tumors. Table 3 depicts the biologic characteristics of the cases analyzed, focusing on the ER, PR, Ki67, and HER2 status within different histotypes. In particular, 18% of cases were found to display HER2-positive cells in >10% of tumor cells, and therefore matched the characteristics for HER2 positivity assessment. Interestingly, this value is closer to the lower end of the reported incidence range of HER2-positive breast cancers. On the other hand, the HER2 status was variable in the discrete areas of both HER2-positive and HER2-negative breast cancer (Figure 3, Table 4), providing further credence to the notion that breast cancer is an extremely heterogeneous disease at the genomic level. The failure rate of the SISH analysis was 0.8%, with a total number of 2,629/2,651 spots in which the dinitrophenol-tagged probe bound to the target sequences.
Figure 1: Representation of cornerstone phases in the realization of a high-throughput platform for the analysis of HER2 heterogeneity in large cohorts of breast cancers. (A) Selection of the areas to sample should include the identification and highlight of all areas with cytological, architectural, or IHC heterogeneity. (B) One of the most critical steps of this procedure is the creation of a high-quality acceptor block, given that even a microscopic crack could infer the consistency of the subsequent in situ hybridization analyses. (C) It is important to employ a digitally guided arrayer with a 1 mm-diameter needle to construct high-yield TMA based on the Kononen technique. (D) The creation of the TMA project should start from the definition of the dimensions and borders of the TMA. (E) All IHC and ISH analyses should be performed using digital pathology tools, in order to quickly navigate across the TMA. Please click here to view a larger version of this figure.
Figure 2: Planimetric representation of the TMA realized for this protocol. A total number of 180 spots of 1 mm diameter, 500 µm apart, allow for an optimal in situ hybridization. Denser TMAs provide unproductive results in terms of overall quality and uniformity of the reactions across all spots, with a higher failure rate on a single-spot basis. Note the "orientation" spots in the top- and middle-left of the grid. Please click here to view a larger version of this figure.
Figure 3: Representative micrographs showing the silver in situ hybridization analysis of an HER2-heterogeneous breast cancer. In this paradigmatic example, two distinct spots of a high-grade invasive breast cancer of no special type (BR_121) showed different results in terms of HER2 gene (black) amplification compared to the centromeric enumeration probe 17 (red). In particular, one area belonging to the tumor core and showing cytokeratin 7 irregular staining pattern was HER2 amplified (A), while a single spot from the invasive front (i.e., tumor edge) displayed a wild-type HER2 pattern (B). Scale bars = 50 µm (20 µm in the insets). Please click here to view a larger version of this figure.
Case ID | Block ID | Area ID | Tissue | Topography | Morphology | ER | PR | Ki67 | HER2 | Other IHC features |
BR_121 | A5 | a | Normal | Surgical margin | ||||||
BR_121 | A1 | a | NST | Tumor core | G2 | CK7+ | ||||
BR_121 | A1 | b | NST | Tumor core | G3 | CK7+/- | ||||
BR_121 | A3 | a | NST | Tumor core | Mucinous stroma | 90 | 100 | 12 | 2+ | |
BR_121 | A3 | b | NST | Invasive front | Tubular | 100 | 100 | 35 | 2+ | |
BR_121 | A4 | a | NST | Invasive front | G3 | |||||
BR_121 | A3 | c | DCIS (EIC+) | Adjacent to invasive front | High-grade | 100 | 100 | 45 | 2+ |
Table 1: Representative record of one case included in the study. This case (BR_121) was a high-grade invasive carcinoma of no special type with focal myxoid stroma, showing a minor tubular component at the periphery of the lesion, and focal-irregular loss of CK7 immunoexpression. The immunohistochemical features, including biomarkers reporting, refers to the analyses performed at the time of diagnosis. NST, invasive carcinoma of no special type; DCIS, ductal carcinoma in situ; EIC+, extensive intraductal component; CK7, cytokeratin 7.
Marker | Clone | Company | Dilution | Dewaxing | Antigen retrieval | Antibody incubation | Scoring system | |
ER | SP1 | Ventana | RTU | EZ prep at 72 °C | cc1 at 95 °C for 36 min | 16 min | ASCO/CAP guidelines23 | |
PR | 1E2 | Ventana | RTU | EZ prep at 72 °C | cc1 at 95 °C for 36 min | 17 min | ASCO/CAP guidelines23 | |
HER2 | 4B5 | Ventana | RTU | EZ prep at 72 °C | cc1 at 95 °C for 36 min | 18 min | ASCO/CAP guidelines3 | |
Ki67 | 30-9 | Ventana | RTU | EZ prep at 72 °C | cc1 at 95 °C for 36 min | 12 min | International Ki67 in Breast Cancer working group recommendations25 |
Table 2: List of antibodies, clones, dilutions, antigen retrieval methods, and scoring systems adopted for immunohistochemical analyses. ER, estrogen receptor; PR, progesterone receptor; RTU, ready-to-use.
Histotype | n (%) | ER+ (%) | PR+ (%) | Ki67-low (%) | Ki-67-high (%) | HER2+ (%) |
Invasive carcinoma of no special type | 344 (77.5) | 301 (87.5) | 257 (74.7) | 85 (24.7) | 259 (75.3) | 71 (20.6) |
Invasive lobular carcinoma | 53 (11.9) | 53 (100.0) | 44 (83.0) | 36 (67.9) | 17 (32.0) | 4 (7.5) |
Invasive carcinoma, mixed-type | 9 (2.0) | 8 (88.9) | 6 (66.7) | 0 (0.0) | 9 (100.0) | 1 (11.1) |
Tubular carcinoma | 8 (1.8) | 8 (100.0) | 8 (100.0) | 8 (100.0) | 0 (0.0) | 0 (0.0) |
Mucinous carcinoma | 11 (2.4) | 11 (100.0) | 9 (81.8) | 7 (63.6) | 4 (36.4) | 0 (0.0) |
Micropapullary carcinoma | 7 (1.6) | 7 (100.0) | 7 (100.0) | 5 (71.4) | 2 (28.6) | 2 (28.6) |
Invasive carcinoma with apocrine featueres | 5 (1.1) | 3 (60.0) | 1 (20.0) | 1 (20.0) | 4 (80.0) | 3 (60.0) |
Papillary carcinoma | 1 (0.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (100.0) | 0 (0.0) |
Medullary carcinoma | 4 (0.9) | 0 (0.0) | 1 (25.0) | 0 (0.0) | 4 (100.0) | 0 (0.0) |
Metaplastic carcinoma | 2 (0.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (100.0) | 0 (0.0) |
Total | 444 | 391 (88.0) | 333 (75.0) | 142 (32.0) | 302 (68.0) | 81 (18.2) |
Table 3: Breast cancer histotypes, receptor status, and HER2 heterogeneity status. ER, estrogen receptor; PR, progesterone receptor; Ki67-low, Ki67 index < 18%; Ki67-high, Ki67 >18%.
Interpretable neoplastic spots | HER2-positive spots (%) | Hormone receptors status | HER2-heterogeneous cases |
6 | 5 (83) | positive | 10 |
6 | 5 (83) | negative | 1 |
6 | 4 (67) | positive | 7 |
6 | 4 (67) | negative | 1 |
6 | 2 (33) | negative | 1 |
6 | 1 (17) | positive | 1 |
5 | 3 (60) | positive | 10 |
5 | 1 (20) | positive | 2 |
4 | 3 (75) | positive | 9 |
4 | 2 (50) | positive | 8 |
4 | 1 (25) | negative | 1 |
3 | 2 (67) | positive | 5 |
3 | 1 (33) | positive | 2 |
46 | 25 (54) | 53 (93) | 57 |
Table 4: HER2 expression, hormone receptor status, and HER2-heterogeneous cases. Among 57 HER2-heterogeneous cases, 4 (7%) cases were ER-negative and PR-negative, confirming the clinical importance of assessing HER2 heterogeneity.
Here, we have detailed the laboratory strategies to perform SISH analyses of the HER2 gene and its corresponding centromere in high-yield TMAs of heterogeneously processed breast cancers. This method is cost-effective and can be carried out in most laboratories for the study of HER2 gene amplification heterogeneity in large cohorts of breast cancers retrieved form pathology archives.
Due to the clinical importance of HER2 testing in breast cancer and the challenges generated by its heterogeneous expression, we developed a high-throughput testing protocol to assess intra- and inter-tumor HER2 genetic heterogeneity. The analyzed areas include pre-invasive and invasive components, on the basis of specific cytological, architectural, and IHC features.
There are several critical phases that should be managed carefully in this protocol. One essential step is the selection of the regions of interest. We have determined that the annotation of the different topographic areas through a multidisciplinary approach is pivotal to ensure the quality of the final molecular analysis. In particular, the joint revision of the diagnostic slides performed by a pathologist and a technician increase enormously the number of adequate spots (i.e., spots reflecting the area identified on the slide) and subsequently reduce the failure rate of the single-spots analysis. However, several tumor spots can be lost after serial sections for multiple IHC and ISH analyses. To overcome this inconvenience, we recommend constructing TMAs in duplicate or triplicate, if at all feasible based on tissue availability. Furthermore, we highlight the importance of defining strict laboratory procedures for the creation of acceptor FFPE blocks for the TMAs. Indeed, we have observed that a minimal crack in the TMA block might infer the entire ISH analysis in terms of quality, reproducibility, and clarity of the reaction. If cracks occur, the donor block should be disregarded for TMA construction. It should be acknowledged, however, that IHC could be performed even in suboptimal TMAs, and no evidence of technical problems during such analysis have been observed in our experience.
Despite that this protocol is specifically optimized for HER2 SISH analyses of high-yield breast TMAs, it is of note that other analyses, such as FISH and IHC, can be reliably performed in several tissue types, as previously described14,19,26. However, we have herein defined the ideal number of spots and the topographic characteristic of the TMA to ensure high-quality and reproducible SISH analyses of the HER2 gene in breast cancer specimens. Another significant point is represented by the reshaping of standard automatized SISH protocols to match the peculiarity of the multiple samples to be analyzed. Indeed, the manufacturers' guidelines are generally made for the molecular analyses of conventional full-face sections, and therefore are not able to reach high standards on heterogeneously processed tissues samples, such as in TMAs from archival FFPE blocks. To this end, we have provided a step-by-step description of a reliable customized protocol for SISH analyses in these problematic samples.
It would be extremely beneficial to explore the heterogeneity of HER2 expression and gene amplification in respect to the heterogeneous distribution of other clinically actionable molecular biomarkers in breast cancer. To this end, further translational research studies are needed to explore the validity of our method for other clinically relevant molecular analyses, such as matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)27. Recently, the management of FFPE tissues for MALDI-MSI analysis has become feasible, albeit challenging. This in situ proteomic technique allows for the visualization of the spatial distribution of proteins and peptides in pathological tissue sections, including breast cancer.
This protocol has several critical steps that can potentially interfere with the final analysis. First, particular attention should be paid towards the different mechanisms underlying HER2 amplification. For example, chromosome 17 polysomy is a genetic aberration that may occur in breast cancer11, representing a well-known alternative mechanism for the increased HER2 copy number. This condition, albeit not frequent, may affect not only the cancer biological features and patient management but also the ISH analyses. Second, it has been described that intra-tumor genetic heterogeneity occur also at a single-cell level and not only in different neoplastic areas. This protocol is not able to increase the detection power of this particular condition compared to full-face sections. Furthermore, it is important to highlight that the TMA-based study of spatial heterogeneity has some intrinsic limitations, including the lack of a comprehensive analysis of the whole section. This study, however, should be considered a proof-of-principle that the heterogeneity of HER2 gene amplification can be assessed by means of a high-throughput and cost-effective platform, using standard laboratory equipment. Further studies analyzing serial full-face sections of HER2-heterogeneous cases, coupled with cutting-edge molecular studies and patients' clinical data will be required to validate this protocol.
In conclusion, the comprehensive mapping of HER2 status in heterogeneous HER2 breast cancer specimens and the investigation of potential driver genetic mutations in HER2-negative components should rely on the analysis of multiple neoplastic regions. This analysis would require unbearable costs and efforts using standard diagnostic facilities. This method represents a reliable tool for the simultaneous characterization of HER2 genetic heterogeneity in large sets of multiple and heterogeneously processed breast cancers.
The authors have nothing to disclose.
None.
Surgipath Paraplast | Leica Biosystems, Wetzlar, Germany, EU | 39601006 | Tissue embedding medium, 56 °C melting point |
Eosin Y 1% water solution | Bio Optica, Milan, Italy, EU | 510002 | Eosin yellowish, water-soluble |
Carazzi’s hematoxylin | Bio Optica, Milan, Italy, EU | 506012 | Alum hematoxylin ripened using potassium iodate |
Diamond quality | Laboindustria, Arzergrande, Italy, EU | 33533 | 26×76 mm microscope slides |
Leica CV Mount | Leica Biosystems, Wetzlar, Germany, EU | 14046430011 | Mounting medium, with no monomers, based on polymers of butylmethacrylate in xylene |
FLEX IHC microscope slides | Agilent Technologies (Dako), Santa Clara, CA, USA | K8020 | Coated microscope slides for adhesion of FFPE for use in IHC |
BenchMark ULTRA | Ventana medical system, Tucson, AZ, USA | N750-BMKU-FS | Slide staining system |
CONFIRM anti-Estrogen Receptor (ER) (SP1) Rabbit Monoclonal Primary Antibody | Ventana medical system, Tucson, AZ, USA | 790-4324 | Primary antibody, ready-to-use |
CONFIRM anti-Progesterone Receptor (PR) (1E2) Rabbit Monoclonal Primary Antibody | Ventana medical system, Tucson, AZ, USA | 790-2223 | Primary antibody, ready-to-use |
CONFIRM anti-Ki-67 (30-9) Rabbit Monoclonal Primary Antibody | Ventana medical system, Tucson, AZ, USA | 790-4286 | Primary antibody, ready-to-use |
PATHWAY HER2 (4B5) Rabbit Monoclonal Primary Antibody | Ventana medical system, Tucson, AZ, USA | 790-4493 | Primary antibody, ready-to-use |
ultraView Universal DAB Detection Kit | Ventana medical system, Tucson, AZ, USA | 760-500 | Indirect, biotin-free system for detecting mouse IgG, mouse IgM and rabbit primary antibodies |
INFORM HER2 Dual ISH DNA Probe Cocktail | Ventana medical system, Tucson, AZ, USA | 780-4422 | INFORM HER2 Dual ISH assay – Dual color in situ hybridization FDA approved automated assay for determining HER2 gene status in breast cancer patients |
ultraView Silver ISH DNP Detection Kit | Ventana medical system, Tucson, AZ, USA | 800-098 | |
ultraView Red ISH DIG Detection Kit | Ventana medical system, Tucson, AZ, USA | 800-505 | |
ISH Protease 3 | Ventana medical system, Tucson, AZ, USA | 780-4149 | Used in the ISH process to remove protein that surrounds the target DNA sequences of interest |
Hematoxylin | Ventana medical system, Tucson, AZ, USA | 760-2021 | Modified Gill's hematoxylin counterstain reagent |
Hematoxylin II Counterstaining | Ventana medical system, Tucson, AZ, USA | 790-2208 | Modified Meyer's hematoxylin counterstain reagent |
Bluing reagent | Ventana medical system, Tucson, AZ, USA | 760-2037 | Aqueous solution of buffered lithium carbonate for bluing hematoxylin stained sections on glass slides |
HybReady | Ventana medical system, Tucson, AZ, USA | 780-4409 | Formamide-based buffer for ISH assays |
EZ Prep (10x) | Ventana medical system, Tucson, AZ, USA | 950-102 | Concentrate solution for paraffin removal from tissue samples during IHC and ISH reactions, and to dilute 1:10. |
SSC Buffer (10X) | Ventana medical system, Tucson, AZ, USA | 950-110 | Sodium Chloride Sodium Citrate buffer solution is used for stringency washes and to rinse slides between staining steps and provide a stable aqueous environment for the in situ hybridization reactions. Dilute 1:5. |
ULTRA LCS | Ventana medical system, Tucson, AZ, USA | 650-210 | Prediluted (ready-to-use) coverslip solution used as a barrier between the aqueous reagents and the air to prevent evaporation in the IHC and ISH reactions |
Reaction Buffer (10x) | Ventana medical system, Tucson, AZ, USA | 950-300 | Tris based buffer solution (pH 7.6 ± 0.2) to rinse slides between staining steps during IHC and ISH. Dilute 1:10. |
ULTRA Cell Conditioning (ULTRA CC2) | Ventana medical system, Tucson, AZ, USA | 950-223 | Pretreatment steps in the processing of tissue samples during IHC and ISH. Ready to use. |
ULTRA Cell Conditioning (ULTRA CC1) | Ventana medical system, Tucson, AZ, USA | 950-224 | |
ultraView Silver Wash II | Ventana medical system, Tucson, AZ, USA | 780-003 | Ready-to-use solution to rinse slides between IHC and ISH staining steps |
Microtome | Leica Biosystems, Wetzlar, Germany, EU | RM 2255 | Automated rotary microtome |
Multistainer | Leica Biosystems, Wetzlar, Germany, EU | ST 5020 | Workstation for automated staining and coverslipping |
Minicore 1 | Alphelys, Plaisir, France, EU | 00-MICO-1 | Semi-automatic arrayer for TMA contruction with TMA Designer 2 embedded software |
Aperio ScanScope CS2 | Leica Biosystems, Wetzlar, Germany, EU | K080254 | Image capture device – digital pathology scanner |
Tissue-Tek III Uni-Cassette | Sakura Finetek Europe B.V | 4135 | Cassette |
Tissue-Tek Paraform Standard Base Mold | Sakura Finetek Europe B.V | 7055 | Stainless-Steel base metal mold |