This protocol describes a technique for observation of real-time Green Fluorescence Protein (GFP) tagged Glucose Transporter 4 (GLUT4) protein trafficking upon insulin stimulation and characterization of the biological role of CCR5 in the insulin–GLUT4 signaling pathway with Deconvolution Microscopy.
Type 2 diabetes mellitus (T2DM) is a global health crisis which is characterized by insulin signaling impairment and chronic inflammation in peripheral tissues. The hypothalamus in the central nervous system (CNS) is the control center for energy and insulin signal response regulation. Chronic inflammation in peripheral tissues and imbalances of certain chemokines (such as CCL5, TNFα, and IL-6) contribute to diabetes and obesity. However, the functional mechanism(s) connecting chemokines and hypothalamic insulin signal regulation still remain unclear.
In vitro primary neuron culture models are convenient and simple models which can be used to investigate insulin signal regulation in hypothalamic neurons. In this study, we introduced exogeneous GLUT4 protein conjugated with GFP (GFP-GLUT4) into primary hypothalamic neurons to track GLUT4 membrane translocation upon insulin stimulation. Time-lapse images of GFP-GLUT4 protein trafficking were recorded by deconvolution microscopy, which allowed users to generate high-speed, high-resolution images without damaging the neurons significantly while conducting the experiment. The contribution of CCR5 in insulin regulated GLUT4 translocation was observed in CCR5 deficient hypothalamic neurons, which were isolated and cultured from CCR5 knockout mice. Our results demonstrated that the GLUT4 membrane translocation efficiency was reduced in CCR5 deficient hypothalamic neurons after insulin stimulation.
Type 2 diabetes mellitus (T2DM) is a global health crisis. T2DM is characterized by insulin signaling impairment and chronic inflammation in peripheral tissues. The hypothalamus is the control center which regulates the body's energy homeostasis, appetite, and circadian rhythms. Most importantly, the hypothalamus also mediates insulin signal responsiveness to regulate systemic metabolism1,2,3,4,5. Disrupting the hypothalamic insulin signaling pathway could induce insulin resistance6,7. The hypothalamus coordinates cellular energy status and secretion of hormones, such as insulin and adipokines (e.g., leptin) from the peripheral tissues, to regulate systemic glucose metabolism, insulin responsiveness, and food intake. Insulin binding to the insulin receptor activates insulin receptor substrate (IRS) proteins, which then activate insulin downstream signaling molecules, such as PI3K (phosphatidylinositol 3-kinase) and AKT (protein kinase B (PKB/AKT)), to induce GLUT4 membrane translocation. Neurons are not the major target for glucose uptake in response to insulin; however, significant levels of GLUT4 expression have been identified in the hypothalamic arcuate nucleus (ARC) region. Therefore, the regulation of GLUT4 in hypothalamic neurons may play an important role in insulin signaling in the brain-peripheral axis.
Many studies have suggested that chronic inflammation and inflammatory chemokines in hypothalamus also play an important role in the development of diabetes and obesity, and inhibition of hypothalamic inflammation can reverse diet-induced insulin resistance8,9,10. Moreover, chemokine-CCL5 (C-C motif ligand 5, also known as RANTES, Regulated-on-Activation-Normal-T-cell-Expressed-and-Secreted) and its receptor CCR5 levels also correlate with the development of T2DM11,12. The roles of CCL5 and CCR5 in insulin function and glucose metabolism remain unclear. One study reported that CCR5 deficiency protected mice from obesity-induced inflammation, macrophage recruitment, and insulin resistance11; in contrast, another study reported that CCR5 deficiency impairs systemic glucose tolerance, as well as adipocyte and muscle insulin signaling12. CCL5 is found to increase glucose uptake in T-cells and to reduce food intake through its action on the hypothalamus13,14, however, both the mechanism of action and the receptors involved are yet to be identified.
It is difficult to study the cellular mechanisms underlying the effect of peripheral tissue inflammation on insulin functioning in hypothalamic neurons. This is due to cellular heterogeneity and neuron circuit feedback regulations. For this reason, an in vitro cell culture model provides a clean model to investigate the effects of the chemokine on hypothalamic insulin signal regulation. Although there are many established immortalized hypothalamic neuronal cell lines for research use, these cell lines expressed different markers, and therefore, represent different types of hypothalamic neurons15. Even though primary hypothalamic cultures can be difficult to maintain, they can provide the most realistic response of hypothalamic neurons upon insulin stimulation, and can also avoid the potential unknown effects which come into play when maintaining cells long-term in culture medium with artificial growth factors.
Herein, we utilize primary hypothalamic neurons from both C57BL/6 wildtype (WT) mouse and CCR5 knockout (CCR5-/-) mouse, and transfect both types of cells with GFP-GLUT4 construct. To investigate the contribution of CCR5 to insulin mediated GLUT4 membrane trafficking, GFP-GLUT4 transfected neurons were treated with insulin or recombinant CCL5. We then characterize the movement of GFP-GLUT4 on the plasma membrane in primary hypothalamic neurons with Deconvolution Microscopy.
All the protocols and methods used in animal subjects have been approved by Institutional Animal Care and Use Committees (IACUC) of Taipei Medical University (Protocol numbers: LAC-2013-0278; LAC-2015-0397)
1. Primary Neuron Culture
2. Transfection of Plasmid DNA into Primary Neuron with Liposome System
CAUTION: For neuron transfection, an endotoxin-free plasmid DNA purification kit (Materials Table) is recommended for DNA preparation. Additional ethanol precipitation can remove excess solvent and enhances DNA concentration.
3. Live Image Recording
The hypothalamic neurons cultured from mice were further identified by immunostaining with hypothalamic specific protein – pro-opiomelanocortin (POMC) antibody and neuronal marker – microtubule-associated protein 2 (MAP2) (Figure 2A). We confirmed the primary cultured hypothalamic neurons expressed hypothalamic protein POMC. The expression of the CCR5 receptor and CCL5 in hypothalamic neurons were identified with specific antibodies and co-labeled with POMC antibody (Figure 2A, 2B).
After 3 days of culturing, neurons were transfected with GFP DNA (Figure 3) or GFP conjugated GLUT4 (Figure 4). GFP expression can usually be found all over the cell without a specific pattern (Figure 3) but the GLUT4-GFP will express as a punctate-like structure in the cytosol (Figure 4). The transfection kit used in this study is not the most efficient method for neuron transfection; however, it is a less stringent method for better cell survival after transfection, which contributes to better live-cell imaging/recording later. The images of GFP-GLUT4 expressing neurons were taken before time-lapse movies (Figure 4A-B, supplementary video 1, 2) upon insulin stimulation or CCL5 stimulation (Figure 4C, supplementary video 3). The signals of GFP and GFP-GLUT4 are clear and strong in neurons.
Hypothalamic neurons with GLUT4-GFP transfection were further treated with insulin (40 U) to characterize GFP-GLUT4 trafficking. Reprehensive videos of GLUT4-GFP movement upon insulin stimulation in both WT and CCR5-/- hypothalamic neurons are shown as Video 1 and Video 2, respectively.
Figure 1: Isolation of tissues from different regions of the mouse brain at the embryonic stage (day 16.5). (A-D) The steps involved in the separation of pups from the placenta. (E, F) The dissection of a pup head from the body. (G-I) The steps involved in the isolation of the whole brain from the skull. The black arrow points in the direction to be pulled while removing the skull using forceps. (J) The isolation of the hypothalamus. The black arrow points to the hypothalamic region between forceps. (K-L) Isolation of the cortex of the mouse brain. The black asterisk indicates the cortical region of the mouse brain and the white arrow points to the separation of the cortex from the whole brain. (M-O) The separation of the hippocampal portion from the cortex. The upper white arrow marks the hippocampal tissue and the lower white arrow marks the cortical tissue. Scale bars = 1 cm (A-F), 200 µm (G-O). Please click here to view a larger version of this figure.
Figure 2: Characterization of hypothalamic neuronal marker – POMC and the co-expression of CCL5 and CCR5. (A) Primary cultured hypothalamic neurons were labeled with hypothalamic neuronal marker – POMC (red), the co-expression of CCR5 (green), and neuron marker MAP2 (gray). (B) The CCL5 (green) expression in POMC (red) positive hypothalamic neurons (Adapted from the supplementary data of reference17). Here, DAPI labeled the nucleus with blue color. Scale bars = 50 µm in (A) and (B). Please click here to view a larger version of this figure.
Figure 3: GFP protein expression in mouse primary neurons. GFP plasmid DNA transfected into primary cultured neurons after 4 days culture (DIV4) with liposome and expressed for another 3 days (DIV7). (A-B) GFP is expressed in both neuritis and soma. (C-D) Neurons with mock transfection; DAPI labeled the nucleus in (B, D). Scale bars = 100 µm. Please click here to view a larger version of this figure.
Figure 4: The snapshots of GFP-GLUT4 in hypothalamic neurons. (A, C) GFP-GLUT4 protein expressed in Wildtype (WT) hypothalamic neurons and (B) CCR5-/- hypothalamic neurons. Neurons were stimulated with insulin (A, B) or CCL5 (C). The arrows point to the GFP-GLUT4 punctate in the neuritis before (-) and after (+) insulin or CCL5 stimulation and asterisks point to the surface GLUT4-GFP before (-) and after (+) CCL5 stimulation in (C). (Figure adapted from reference17). Please click here to view a larger version of this figure.
5x Borade Buffer | Company | Catalog Number | Volume |
Boric Acid | Sigma-Aldrich | B6768 | 1.55 g |
Borax | Sigma-Aldrich | 71997 | 2.375 g |
ddH2O | 100 mL | ||
Filtered, Keep at 4 °C | |||
20x Poly-D-Lysine stock | Company | Catalog Number | Volume |
Poly-D-Lysine | Sigma-Aldrich | P6407 | 100 mg |
ddH2O | 100 mL | ||
Filtered, Keep at -20 °C | |||
1x Poly-D-Lysine | Volume | ||
20x Poly-D-Lysine | 5 mL | ||
5x Borade Buffer | 20 mL | ||
ddH2O | 75 mL | ||
Total | 100 mL | ||
Keep at 4 °C | |||
Wash Medium | Company | Catalog Number | Volume |
DMEM-High glucose | Gibco | 12800-017 | 495 mL |
Antibiotic-Antimyotic | Gibco | 15240-062 | 5 mL |
Total | 500 mL | ||
Keep at 4° C | |||
Papain-Trypsin digestion buffer: | Company | Catalog Number | Volume/Final Concentration |
Papain (10 mg/mL) | Sigma-Aldrich | P4762 | 200 µL (2 mg/mL) |
Trypsin-EDTA (0.25%) | Gibco | 25200-072 | 200 µL (0.05%) |
Wash Medium | 600 µL | ||
Total | 1,000 µL | ||
Keep at -20 °C | |||
Plating medium: | Company | Catalog Number | Volume |
Neurobasal medium | Gibco | 21103-049 | 176 mL |
Fetal Bovine Serum | Gibco | 10437-028 | 20 mL |
L-glutamate (200 mM) | Gibco | 25030 | 2 mL |
Antibiotic-Antimyotic | Gibco | 15240-062 | 2 mL |
Total | 200 mL | ||
Keep at 4 °C | |||
Complete culture medium | Company | Catalog Number | Volume |
Neurobasal medium | Gibco | 21103-049 | 95 mL |
N2 supplement (100x) | Gibco | 17502-048 | 1 mL |
B27 supplement (50x) | Gibco | 17504-04 | 2 mL |
L-glutamate (200 mM) | Gibco | 25030 | 1 mL |
Antibiotic-Antimyotic | Gibco | 15240-062 | 1 mL |
Total | 100 mL | ||
Freshly prepared |
Table 1: Digestion buffer and media composition used in this study.
Supplementary Video 1: Insulin stimulated GFP-GLUT4 movement in WT hypothalamic neurons. Please click here to download this file.
Supplementary Video 2: Insulin stimulated GFP-GLUT4 movement in CCR5-/- hypothalamic neurons. Please click here to download this file.
Supplementary Video 3: CCL5 stimulated GFP-GLUT4 movement in WT hypothalamic neurons (Video adapted from reference17). Please click here to download this file.
The ability to monitor live cells, upon CCL5 or insulin stimulation, is critically important for studying the rapid effect of CCL5 or insulin on GLUT4 movement. In fact, it allows us to visualize the significant difference between WT and CCR5-/- hypothalamic neurons upon insulin stimulation. We have performed the surface labeling of endogenous GLUT4 protein in WT and CCR5-/- hypothalamic neurons at different time points after insulin stimulation17. The labeling of cell surface proteins requires high-specificity antibody with low background. In addition, surface fluorescence quantification can also be challenging and time consuming. Thus, time-lapse recording allows us to be certain that the effect of CCL5 or insulin is a true physiological change based on experimental conditions, rather than a statistical variation. Together with surface labeling of endogenous GLUT4, we provide strong evidence and experiments to demonstrate how CCL5 and CCR5 participate in GLUT4 translocation and insulin signaling.
In modern cell biology and molecular biology studies, many experiments require the utilization of fluorescence microscopy. This technology allows scientists to visualize the spatial relationship between proteins and/or cellular organelles, in addition to movement direction and speed, stimulatory effects, morphological changes, and protein trafficking. However, this technology still has its limitation: when fluorophores are excited, signals emitted from the target protein (or area) can be overwhelmed by background fluorescence. As a result, fluorescence images can appear blurry with expected signals buried deep into background signals. This phenomenon is especially apparent for the observation of membrane-bound proteins.
Total Internal Reflection Fluorescence Microscopy (TIRFM) was developed to overcome this difficulty. It allows scientists to visualize the excitation of selected surface-bound fluorophores without affecting the background fluorophores. It allows scientists to selectively characterize features and events on a very thin surface region such as a plasma membrane. Deconvolution microscopy is a computationally intensive image processing technique that is made possible with the help of technological advancements in recent years. It has been frequently utilized to improve digital fluorescence image resolution. As mentioned previously, when fluorophores are being excited by any type of illumination (such as laser or LED), all fluorophores will emit light signals regardless if they are in focus or not, so the image will always appear blurry. This blurring is caused by a phenomenon called "Point Spread Function" (PSF), as light coming from a small fluorescent source (bright spot) will spread out further and become out of focus (blur). In principle, this event will produce an hourglass-like shaped fluorescent signal, and a fluorescence image can be made up of numerous such light signals. The deconvolution process can reassign all the fluorescence signals to its original bright spot form, and eliminate most of the out-of-focus light to improve image contrast.
In recent years, deconvolution algorithms have generated images with comparable resolution to that of a confocal microscope. Moreover, in comparison with TIRFM, which prevents out-of-focus blur from being detected by a limited excitation region, wide-field microscopy allows all light signals to be detected and reassigns them back to their source through the deconvolution process. Therefore, in practice, deconvolution microscopy has become not only a more efficient image acquisition method, but also a more cost-effective method when compared to TIRF microscopy.
The authors have nothing to disclose.
We are grateful for the grants provided by the Ministry of Science and Technology, Taiwan – MOST105-2628-B-038-005-MY3(1-3) and Health and welfare surcharge of tobacco products – MOHW106-TDU-B-212-144001 to S-Y C.
DeltaVision deconvolution microscope | Applied Precision Inc./(GE Healthcare Life Science) | equipped with 60x/1.42 NA oil immersion objective lens; used for taking live cell images | |
SoftWorX application software | Applied Precision Inc. | used to control microscope and camera | |
VoloCITY software | PerkinElmer | used to analyze the images | |
Insulin | Actrapid, Denmark | ||
Liposome | Invitrogen | 11668019 | Lipofectamine® 2000, used for plasmid DNA transfection |
GFP control plasmid DNA | provided by Professor Samuel Cushman | ||
GFP-GLUT4 plasmid DNA | provided by Professor Samuel Cushman | ||
Anti-mouse Alex-488 | Invitrogen | #A-11001 | Secondary anitbody |
Anti-rabbit IgG -Alex-568 | Invitrogen | #A-11036 | Secondary anitbody |
CCL5/RANTES | R&D Systems | 478-MR-025 | 10ng/ml |
Kimwipes | Kimberly-Clark | #FL42572A | 0.17mm thickness |
12 mm Microscope coverglass | Deckglaser | #41001112 | used for immmunstaining study |
micro-dissecting scissors | Klappenecker | Surgical tool | |
curved-tipped forceps | Ideal-tek | Surgical tool | |
standard straight-tipped forceps | Ideal-tek | Surgical tool | |
EndoFree Plasmid Maxi Kit | QIAGEN | 12362 | Purify Endotoxin free plasmid DNA |
5 ml pipette | Corning costar | 4487 | dissociate brain tissue |