The goal of this protocol is to alter the penetrance of lethal skeletal mutant phenotypes in zebrafish by selective breeding. Lethal mutants cannot be grown to adulthood and bred themselves, therefore this protocol describes a method for tracking and selecting penetrance through multiple generations by progeny testing.
Zebrafish mutant phenotypes are often incompletely penetrant, only manifesting in some mutants. Interesting phenotypes that inconsistently appear can be difficult to study, and can lead to confounding results. The protocol described here is a straightforward breeding paradigm to increase and decrease penetrance in lethal zebrafish skeletal mutants. Because lethal mutants cannot be selectively bred directly, the classic selective breeding strategy of progeny testing is employed. This method also includes protocols for Kompetitive Allele Specific PCR (KASP) genotyping zebrafish and staining larval zebrafish cartilage and bone. Applying the husbandry strategy described here can increase the penetrance of an interesting skeletal phenotype enabling more reproducible results in downstream applications. In addition, decreasing the mutant penetrance through this selective breeding strategy can reveal the developmental processes that most crucially require the function of the mutated gene. While the skeleton is specifically considered here, we propose that this methodology will be useful for all zebrafish mutant lines.
The zebrafish is a powerful model system for understanding skeletal development. With mutant zebrafish strains, biologists can decipher gene function during skeletogenesis. However, zebrafish skeletal mutant phenotypes can present with variable penetrance1,2,3,4 which can hinder developmental and genetic analyses. The purpose of this method is threefold. First, generating zebrafish mutant lines which consistently produce severe phenotypes enables downstream developmental studies like time-lapse recording5 and transplantation6. These sorts of studies can be crippled by attempting to study phenotypes that only manifest inconsistently. Second, inbreeding zebrafish strains can decrease genetic background variation, thus promoting experimental consistency and reproducibility. For example, performing all in situ hybridization analyses on one selectively inbred strain can reduce confounding variability and strengthen conclusions. Third, generating severe and mild strains will reveal the entire phenotypic series that can result from a particular mutation.
At first glance, selective breeding of lethal mutants seems impossible. How can one breed for penetrance when the animals that are scored for selection are dead? Fortunately, methods for selective breeding by family selection, specifically progeny testing, have demonstrated effectiveness in livestock breeding programs for many years7,8. These programs are mainly used for selective breeding for traits that are only present in one sex, like milk production in cows or egg production in hens. The males of these species cannot be scored directly, but their progeny are scored and a value is then assigned to the parents. Borrowing from this strategy, the protocol presented here involves scoring the fixed and stained mutant offspring from a pair of zebrafish that are heterozygous for a mutant gene of interest. The penetrance of a phenotype in the homozygous lethal mutant offspring is assigned to the parents when deciding which individuals will produce the next generation in the line. We find that this method is an effective means of shifting penetrance in zebrafish lethal skeletal mutants1.
Similar to other studies, this selective breeding protocol takes under consideration criteria like clutch size, survival of offspring, normal development of embryos, and sex ratio9. However, these factors are all considered in the context of a mutant background with the objective of shifting the mutant penetrance. Therefore, this protocol extends previous selective breeding paradigms by offering a method to strengthen developmental mutant analyses as well as increase background homogeneity.
This protocol requires extensive genotyping, so it is important to develop a reliable, rapid genotyping protocol in advance. There are many genotyping protocols available10,11, however we find the KASP genotyping12,13,14 is faster, more cost efficient, and more reliable than methods based on restriction enzyme cleavage of amplified sequences10. Therefore, we include a KASP protocol in this work. Additionally, we focus on skeletal mutant phenotypes in this protocol and include a procedure for Alcian Blue/Alizarin Red staining modified from previous protocols15.
The method described here is a straightforward strategy for shifting lethal mutant penetrance upward or downward. While this protocol focuses on skeletal mutant phenotypes, we believe it will be a useful strategy for husbandry of all mutant zebrafish lines. In fact, the utility of this breeding strategy likely extends beyond zebrafish. We predict that this protocol can be modified to shift penetrance in a broad range of organisms. Shifting lethal penetrance by progeny testing can help push forward the progress of any developmental geneticist.
All experiments described in this protocol were completed in accordance and compliance with the University of Colorado and the University of Oregon Institutional Animal Care and Use Committees (IACUC).
1. Preparing the Unselected Starting Stock
2. The First Round of Progeny Scoring
3. Family Selection
This protocol is a long-term husbandry technique useful for understanding zebrafish skeletal mutants (Figure 1). Selective breeding by progeny testing should yield a shift in overall penetrance both downward and upward in a few generations (Figure 2). In our previous work, two rounds of selective breeding drove the average penetrance downward from 17% to 3%1. Similarly, in our upward line, we shifted the average penetrance upward from 63% to 93% in three generations. If after four rounds of selective breeding the penetrance does not respond downward or upward, it is possible that the phenotype that is being scored is not sensitive to selective breeding by progeny testing.
In a successful KASP procedure, tight groupings of samples corresponding to genotype should be recognized by the computer program, and the NTCs should be located near the origin of the plot after sufficient cycles have been performed (Figure 3). If the KASP scatter plot data is not grouped tightly or contamination in one NTC is detected, the program will be unable to determine genotypes. If most samples are recognized by genotype grouping, but there are still some that are ambiguous, omitting undetermined samples from the data set may allow the program to recognize genotyping clusters. Undetermined sample calls and ambiguous genotype grouping may result from the following: contaminated reaction mixtures in which NTCs will not group near the origin, over-diluted template DNA causing samples to locate near the origin, under-diluted template DNA, or insufficient number of reaction cycles. Prepare fresh NTCs if contamination is suspected.
A successful Alcian Blue/Alizarin Red stain will have vibrantly stained bone and cartilage elements (Figure 4A) that are not transparent or faint (Figure 4B). The boundaries of the cartilage elements should appear crisp, and individual chondrocytes will be discernable. The Alizarin Red bone stain is usually the more finicky of the two stains. The fan-shaped opercle (op) bone and stick shaped branchiostegal rays (br) are good indicators of a successful 6 days post fertilization (dpf) bone stain (Figure 4A, op, br). The bleaching step should not fade the stains in the bone and cartilage while fully clearing the other tissues of color. The eyes will have a brown hue even after successful staining and clearing. Alcian Blue that is too concentrated will not clear from other tissues making analysis impossible (Figure 4C). Alcian Blue from vendors other than the one described in the material's table can also produce poor cartilage stains.
Figure 1. Schematic Overview of Selective Breeding for Skeletal Penetrance by Progeny Testing. (A) Genotype a full-sibling family from a mutant line to identify heterozygous carriers. (B) Pair-wise cross identified heterozygous siblings, and keep parents isolated until offspring can be scored. (C) Place phenotypically wild-type larvae with inflated swim bladders in the nursery to be raised to adulthood, and fix mutant larvae without inflated swim bladders for cartilage and bone staining. (D) Score each clutch of Alcian Blue/Alizarin Red stained mutant animals for penetrance. Select which families will be bred upward and downward and raise the phenotypic wild types from each family to adulthood. (E) House parental pairs with companions so that they can be repeatedly crossed to generate large full-sibling families. Please click here to view a larger version of this figure.
Figure 2. Example of Shifting Skeletal Mutant Penetrance by Progeny Testing. Selective breeding as described in this manuscript was applied to the zebrafish mef2cab1086 mutant. In this experiment, we selected for high or low penetrance of ectopic bone between the opercle and the branchiostegal ray in lethal homozygous mutants. Penetrance of ectopic bone in mutant offspring was assigned to the parental pair who was color-coded by penetrance as shown. This figure was modified from1. Please click here to view a larger version of this figure.
Figure 3. Screen Shot from Software used for KASP Genotyping and Results Analyses.
In this successful KASP reaction, tight sample groupings were formed. Blue points are homozygous mutant, green points are heterozygous, red points are homozygous wild-type, and black squares are the NTCs. Groupings were designated by the computer program. The NTCs are located near the origin of the plot signifying little to no reaction mixture contamination. Undetermined samples that are not yet assigned a genotype would be indicated with an x. There are no undetermined samples present in this successful completed run. Please click here to view a larger version of this figure.
Figure 4. Good, Bad and Ugly Alcian Blue/Alizarin Red Skeletal Preparations.
(A) An example of a fresh, nicely stained and cleared cartilage and bone stain is shown. Note the distinct cartilage elements and easily visualized red opercle (op) and branchiostegal ray (br) bones. (B) A weak cartilage stain with faded Alizarin Red stain is shown. This sample sat at 4 °C for many months resulting in faded cartilage as well as opercle and branchiostegal ray bones that are difficult to distinguish. (C) An over-stained larva in which too much Alcian Blue was used. The scale bar is 200 μm. Please click here to view a larger version of this figure.
Selective Breeding Unveils Subtleties of Gene Function
Shifting mutant phenotypes to be either more or less severe by selective breeding is a straightforward way to gain new insights into gene function. When compared with standard methods of unselected breeding, the protocol presented here can yield a much more complete understanding of mutant phenotypes. Specifically, by generating strains that are severe, the full breadth of mutant phenotypes may be revealed, including some that were unobservable with unselected stocks. Thus, new developmental roles for the gene under study can be discovered. Conversely, generating mild strains can reveal the most crucial roles for the gene of interest. Take, for example, only a single phenotype persists in mild mutants. Here it is likely that the developmental process that remains disrupted in the mild strain most critically requires the function of the gene. Hence, the full phenotypic series of a given mutation can be more fully understood through selective breeding.
Avoiding Inbreeding Depression
The offspring of related individuals demonstrate reduced survival and fecundity in many animal and plant systems, including zebrafish20. Known as inbreeding depression, most models posit that increased homozygosity at loci with either recessive deleterious alleles or alleles that are beneficial as heterozygotes underlie this phenomenon21. Studies with wild-caught zebrafish reveal a low frequency of deleterious alleles in natural populations22. Moreover, laboratory strains like AB were further cleared of recessive lethal mutations23. Thus, it seems that careful husbandry could allow indefinite inbreeding of selected zebrafish lines. Indeed, a recent report revealed that zebrafish can be maintained by full-sibling inbreeding for at least 16 generations9.
This protocol emphasizes a few simple but critical steps to ensure that inbred zebrafish lines continue to produce enough offspring to be useful for developmental studies. The most crucial aspect of this selective breeding strategy is the selection process itself. First, developing animals must be carefully monitored so that families with developmental defects or abnormalities, unlinked to the mutation of interest, can be stringently selected against. Second, clutch size should be considered, as selective breeding requires large families. In addition to selecting pairs that yield large clutches, large families can be generated through repeat crosses of the same parental pair. Keeping parental pairs in tanks with many other companion fish, which are easily discerned from the breeding pair, such as pigmentation or fin mutants, allows for long-term housing of breeding pairs in large conspecific groups while allowing them to still be easily identified and retrieved. This practice promotes a healthy social environment where the parental pair are free to shoal with other zebrafish24. Yet the researcher can easily retrieve the parental pair so that they can be crossed repeatedly, enabling the generation of very large full-sibling families.
Choosing a Selectable Phenotype
This protocol involves a great deal of phenotype scoring. Thus, one limitation is that the selection needs to be applied to a phenotype that is easy to visualize and score rapidly. It is also important to decide at what stage animals will be fixed and stained for scoring. For bone phenotypes, it is advantageous to wait until 6 dpf because the bones are more developed25 and will be more easily scored. For cartilage patterning mutant phenotypes, 4 dpf is often suitable for phenotype scoring26,27. In deciding when to fix animals, it is important to consider if the gene of interest has pleiotropic roles leading to developmental mutant phenotypes in other tissues, which can result in confounding secondary defects. For example, with skeletal mutants that also display heart edema it is important to fix at 4 dpf before secondary defects like a general delay in chondrogenesis manifest26.
For simplicity, we chose a binary scoring system focusing on penetrance for our selective breeding. However, mutant phenotypes can also have variable expressivity. In future studies, it will be interesting to test if, like penetrance, expressivity is sensitive to selective breeding. That is, can the frequency of specific ectopic bone shapes be altered through selective breeding?
This protocol describes the classic selective breeding strategy of progeny selection and its application to zebrafish developmental genetic studies. The straightforward husbandry practices described here are possible in any laboratory, even in small facilities. Through selective breeding, one of the greatest strengths of the zebrafish system, tractable genetics, can be harnessed to learn about gene function in newly developed mutants as well as mutants that have been propagated for decades.
The authors have nothing to disclose.
We would like to thank Chuck Kimmel for guidance, John Dowd for help in developing this breeding strategy, Macie Walker for her work in perfecting the skeletal stain, and Charline Walker and Bonnie Ullmann for helpful zebrafish advice. This work was supported by K99/R00 DE024190 to JTN.
Paraformaldehyde, pelleted, solid | Ted Pella Co. | 18501 | Pelleted PFA is a safer alternative to powdered PFA |
Magnesium Chloride, solid | Acros Organics | 223210010 | |
10x PBS, Aqueous | Fisher | BP3994 | |
190 proof Ethanol | |||
Alcian Blue, solid | Anatech Ltd. | 867 | Must be from Anatech |
Alizarin Red, solid | Sigma | A5533-25G | |
Glycerol, liquid | Fisher | BP229 1 | |
Hydrogen peroxide, liquid | Fisher | BP263500 | |
Potassium hydroxide, solid | Fisher | P250 500 | |
StepOnePlus Real-time PCR Machine | Applied Biosystems | ||
MicroAmp Fast Optical 96-well Reaction Plate with Barcode (0.1mL) | Applied Biosystems | 4346906 | |
Microseal 'B' seal | BioRad | MSB1001 | |
KASP Master Mix, High ROX | LGC | KBS-1016-022 | https://www.lgcgroup.com/products/kasp-genotyping-chemistry/#.WOPX41UrKUk |
KASP By Design Primer Mix | LGC | KBS-2100-100 | |
Tris HCl, solid | Fisher | BP153 500 | |
potassium chloride, solid | Fisher | BP366 500 | |
Tween-20, liquid | Fisher | BP337 100 | |
Nonidet P40 | ThermoFisher | 28324 | |
Tricaine-S | Western Chemicals | ||
Proteinase K | Fisher | BP1700 100 | |
T100 Thermal Cycler | BioRad | 1861096 | |
Controlled Drop Pasteur Pipets | Fisher | 13-678-30 | |
Nanodrop | ThermoFisher | for DNA quantitation |