This protocol describes a simple method for isolating and culturing primary mouse cerebral granule neurons (CGNs) from 6-7 day old pups, efficient transduction of CGNs for loss and gain of function studies, and modelling NMDA-induced neuronal excitotoxicity, low-potassium-induced cell death, DNA-damage, and oxidative stress using the same culture model.
Cerebellar granule neurons (CGNs) are a commonly used neuronal model, forming an abundant homogeneous population in the cerebellum. In light of their post-natal development, abundance, and accessibility, CGNs are an ideal model to study neuronal processes, including neuronal development, neuronal migration, and physiological neuronal activity stimulation. In addition, CGN cultures provide an excellent model for studying different modes of cell death including excitotoxicity and apoptosis. Within a week in culture, CGNs express N-methyl-D-aspartate (NMDA) receptors, a specific ionotropic glutamate receptor with many critical functions in neuronal health and disease. The addition of low concentrations of NMDA in conjunction with membrane depolarization to rodent primary CGN cultures has been used to model physiological neuronal activity stimulation while the addition of high concentrations of NMDA can be employed to model excitotoxic neuronal injury. Here, a method of isolation and culturing of CGNs from 6 day old pups as well as genetic manipulation of CGNs by adenoviruses and lentiviruses are described. We also present optimized protocols on how to stimulate NMDA-induced excitotoxicity, low-potassium-induced apoptosis, oxidative stress and DNA damage following transduction of these neurons.
Cerebellar granule neurons (CGNs) are well characterized in culture and have served as an effective model to study neuronal death and development 1,2,3,4,5,6. The early expression of N-methyl-D-aspartate (NMDA) receptors in CGN cultures in vitro makes them an attractive model to study NMDA-induced signalling. Activation of these receptors with NMDA in conjunction with membrane depolarization is used to model physiological neuronal activity stimulation, and has allowed for research into the mechanisms of synaptic plasticity 7,8. On the contrary, over-stimulation of these receptors by NMDA ligand can be used to model excitotoxicity, a major mechanism of neuronal loss in acute brain damage and neurodegenerative diseases 9. One mechanism for the induction of excitotoxicity is through ATP starvation with reduced oxygen, as seen with acute neuronal injury. This results in membrane depolarization and elevated levels of glutamate release at the synapse. The subsequent overstimulation of the NMDA receptor by elevated glutamate results in excessive Ca2+ influx via these receptors, which in turn activates several pathways including Ca2+-activated proteases, phospholipases, and endonucleases, resulting in the uncontrolled degradation of critical cellular components and cell death. Additionally, high intracellular Ca2+ leads to the generation of oxygen free radicals and mitochondrial damage 10,11.
While the majority of neuronal loss following NMDA-induced neuronal excitotoxicity is due to calcium influx and is Bax/Bak independent, other mechanisms of cell death cannot be excluded from this model. The appearance of both necrotic and apoptotic like cell death due to excitotoxicity is partially due to the generation of reactive oxygen species (ROS) and DNA damage caused by high intracellular Ca2+ levels 12. DNA damage results in neuronal death through apoptotic mechanisms, being correlated with hallmarks of apoptotic cell death, such as the appearance of chromatin masses and apoptotic bodies. Induction of apoptosis is mediated through the release of cytochrome c from the mitochondria, and has been shown to be dependent on Bax/Bak oligomerization 13. Bax/Bak oligomerization promotes pore formation in the outer mitochondrial membrane, resulting in cytochrome c release and the activation of pro-apoptotic regulators as seen with mild ischemic injury 14.
Generation of ROS is a significant issue in the brain due to the low endogenous levels of antioxidants, coupled with the large oxygen requirement for neuronal functioning 15. When exposed to an ischemic event, nitric oxide synthase is upregulated , producing nitric oxide and increasing reactive oxygen species 14. The increased concentration of oxygen radicals can result in DNA damage and indirectly cause energy starvation. High levels of DNA double-stranded breaks are remedied by the activation of poly ADP-ribose polymerase-1 (PARP-1), an eukaryotic chromatin-bound protein responsible for catalyzing the transfer of ADP-ribose units from NAD+, a process integral to DNA repair 16. However, with excessive damage due to oxidative stress, PARP-1 activation can cause energy starvation due to the increased drain on NAD+, a necessary substrate for ATP production through oxidative phosphorylation. Ultimately, oxidative stress will trigger apoptosis in a Bax/Bak dependant manner leading to mitochondrial cytochrome c release, and has been shown to induce mitochondrial remodelling in CGNs 17.
Finally, changes in concentration of potassium chloride (KCl) in CGN cultures can be used to model low potassium/depolarization mediated apoptosis 18,19,20. When exposed to low levels of K+, CGNs undergo distinct physiological changes, resulting in reductions of both mitochondrial respiration and glycolysis, attributed to decreased cellular demand 21, as well as reduction in levels of nuclear factor-κB (NFκB) which regulates activities including inflammation and synaptic transmission 22. This model is of particular interest for the study of cell death during neuronal development. The low K+ environment more closely resembles physiological conditions, and causes hallmarks of cell death seen during neuronal development 23.
In summary, CGNs provide a longstanding model to investigate the underlying molecular mechanisms of neuronal death and degeneration. The following protocol will allow isolation and culturing of CGNs, expression or repression of a particular genetic pathway using viruses and the induction of neuronal death via different mechanisms representing neuronal injury and degeneration.
This protocol is based on modifications of procedures that have been described previously 18,24,25,26,27. This protocol is approved by the Animal Care Committee at McGill University.
1. Experimental Preparation
NOTE: The following stock solutions can be prepared and maintained until use.
2. Brain Extraction and Isolation of Cerebellum
3. Mouse Cerebellar Granule Neuron Isolation and Culturing
4. Lentivirus Packaging, Purification and Titration
NOTE: The protocol for the packaging, concentration, purification and titration of lentivirus has previously been described in detail without the use of a kit 28, including alternative methods for titration, such as flow cytometry 29. Here we briefly present the protocol used in our lab for the production of lentivirus to study neuronal injury using speedy virus purification solution and a qPCR lentiviral titration kit.
5. Modeling Neuronal Injury
With careful dissection, the intact brain should be removed with minimal damage as seen in Figure 1A-B. Effort should be taken to minimize damage to the brain during removal, particularly damage to the cerebellum. Damaging the cerebellum makes for more difficult identification and complete removal of the meninges, and increases the likelihood of contamination of the neuronal culture. Once the meninges have been removed, the cerebellum can be dissected from the remaining tissue as seen in Figure 1C and prepared for dissociation.
Prior to plating, CGNs can be transduced with lentivirus or infected with adenovirus as described in Figure 2. We find maximum efficiency and minimal toxicity with MOI 50 for infection with adenovirus, and an MOI of 2-3 at day of plating for lentivirus (Figure 3).
Transduced healthy CGN cultures at 7 DIV are presented in Figure 3A. If large numbers of glia remain present in the culture, the concentration of AraC can be increased to ensure a pure neuronal population. Also glial cells take up the virus more easily than neurons and that becomes critical if the transductions are performed at day 5. The presence of neurons undergoing cell death can be assessed by the formation of pyknotic nuclei as seen in Figure 3C. All concentrations of the NMDA, H2O2, and Camptothecin are optimized to induce 50% cell death after 24 h. This allows for studying other early events that precede neuronal loss such as mitochondrial fragmentation.
Figure 1: Removal of mouse brain and dissection of cerebellum. (A) To extract the brain of a 6-7 day old mouse, using a pair of forceps, grasp the head and cut the skin anteriorly along the dotted lines using a pair of microdissection scissors. Be careful to cut only the skin and connective tissue, too deep an incision may puncture the skull and damage the brain. These three incisions, straight along the midline, and two curving laterally, allow for the skin to be pushed back revealing the skull. Once exposed, the skull can be penetrated with the tip of the scissors, and cut anteriorly. Great care must be taken not to damage the cerebellum to facilitate identification and removal of meninges. Once cut, forceps may be used to peel back the skull, exposing the brain which may then be teased out into cool dissection solution using a pair of forceps or spatula. In order to remove the brain, the optic nerve may need to be severed. (B) Once removed from the skull, the meninges should be removed from the cerebellum using a pair of fine tipped forceps. (C) Using a pair of fine tipped forceps, the cerebellum is dissected from the remaining tissue and inspected to ensure complete removal of the meninges. Please click here to view a larger version of this figure.
Figure 2: Modeling neuronal injury in cerebellar granule neurons. Isolated cerebella from day 6-7 mice are dissociated into single cells following the procedure presented in part 3. Following dissociation, cells are counted and resuspended in a volume of culture media to generate 1.5 x 106 cells/mL.For 35 mm dishes, 4 mL are plated, giving 6 x 106 cells per plate. For imaging slides, 0.5 mL is plated, giving 7.5 x 105 cells/well. CGNs can then be transduced with lentivirus or infected with adenovirus. Using adenovirus on the day of plating (0 days in vitro (DIV)) gives greater than 90% transfection efficiency and allows for the study of neuronal injury through oxidative stress and DNA damage. The addition of 10 µM camptothecin (CPT) will induce DNA damage, while 75-100 µM hydrogen peroxide (H2O2) will induce oxidative stress. The concentration of H2O2 must be optimized to induce 50% cell death after 24h. Infecting with adenoviruses at 5 DIV gives a lower transduction efficiency of less than 10%. At 7 DIV when NMDA receptors are enriched in the culture, Neurons can be treated with 100 µM NMDA and 10 µM glycine to induce excitotoxicity. This is ideal for subsequent imaging analysis or tracing a single neuron. Finally, transducing with lentivirus at 0 DIV, followed by treating with 100 µM NMDA and 10 µM glycine at 7 DIV, gives a sufficiently high transduction efficiency (>80%) to allow for biochemical analysis of the culture, including ChIP sequencing, examining protein expression, and performing live/dead assays. Please click here to view a larger version of this figure.
Figure 3: Cerebellar granule neurons. (A) Neurons were transduced with lentiviruses for RFP at an MOI of 3 at the time of plating, and fixed and stained at 7 days in vitro. Colocalization of RFP signal, MAP2, and Hoechst is shown to demonstrate healthy neurons that are fully transduced by lentiviruses. (B) The images represent live dead assay analyses of neurons infected with different MOI, to measure toxicity. CGNs infected with adenovirus expressing LacZ at an MOI between 25 and 50 allows for maximal efficiency while maintaining minimal toxicity. Less than a 1% difference in cell survival compared to control is seen when infecting at this MOI. (C) Hoechst staining of control CGNs and CGNs treated with NMDA to induce cell death. Note the formation of pyknotic nuclei with NMDA treatment. This is indicative of cell death, and can be seen in approximately 50% of the culture 24 h after treatment with 100 µM NMDA and 10 µM Glycine. Please click here to view a larger version of this figure.
Here we provide a simple method for the culturing of primary mouse cerebellar granule neurons (CGNs), loss and gain of function studies, and modeling different mechanisms of cell death. Several factors affect the reproducibility of the results using this procedure which require close monitoring. These include the purity of the culture including the elimination of glial cells in the culture, the confluence of the culture, and maintaining healthy cells. Introducing variability in these factors can bias the results and challenge the reproducibility. Below we describe how to minimize the factors that negatively affect the results.
To eliminate glial cells from the CGNs culture and establish a pure neuronal population, we use 10 µM of cytosine-β-arabino furanoside (AraC), a pyrimidine antimetabolite that kills proliferating cells by inhibiting DNA synthesis. If there is still a population of glial cells present, the concentration of AraC can be increased to 15 µM. This is also lot dependent. In addition, for cultures that are maintained for up to 7-8 days, a second AraC treatment can be performed on day 3. To obtain a pure neuronal population and avoid cell death, it is important to peel all the meninges off the cerebellum prior to cutting the tissue into pieces, followed by trypsinization. This should be done in a reasonably short period of time (not longer than 7-10 min per cerebellum). The presence of meninges in the neuronal culture results in unhealthy culture and eventually cell death. Another factor that could result in death of neurons prior to treatment is the trypsinization time. It is important that cells are not over-trypsinized. On the other hand, under-trypsinization requires further mechanical dissociation of the cells that may damage them or result in a low yield. Therefore, the trypsinization time requires optimization and it is lot dependent.
The next factor to be considered is the confluence of the cells at the time of use. Different confluency can generate variability in the results. This is particularly important depending on the readout in the experiments. With a low confluence state, neurons start to clump after 2-3 days. A too low or too high confluence state of the neurons impairs signalling. It is important to count the number of live cells for accurate plating.
Other methods of CGN cultures have been described, particularly looking at basic culturing procedures using a Papain Dissociation system kit 30 as well as post-culturing procedures and manipulation of CGN in order to study neuronal migration and morphology 31. The protocol presented by Lee et al. describes the use of the Papain Dissociation System Kit. They recommend two methods to increase the purity of the isolated CGNs: running the cells through a Percoll gradient separation, as well as pre-plating on a poly-D-Lysine plate for 20 min. Both methods are to aid in the separation of CGNs from glial contaminants. This is recommended in case treatment with AraC alone is not sufficient to enrich for pure neuronal culture. Additionally, Lee uses 4-6 day old mouse pups, while this serves an effective model for examining neuronal differentiation; we find using CGNs from 6-7 day old mouse pups is more appropriate for the study of neuronal injury. Holubowska et al. presents a protocol for transfection of post mitotic cerebellar neurons using the calcium phosphate method in vitro and electroporation in vivo. These are excellent methods for genetic manipulation of neurons in which a single neuron can be traced. The transfection efficiency using calcium phosphate method can vary from 0.1-5%. Therefore, we find that for biochemical analyses including ChIP-Seq analyses, Co-immunoprecipitation, and immunoblotting, use of lentiviruses is more appropriate as it results in more than 80% transduction when transduced at the time of plating.
The authors have nothing to disclose.
This work is supported by Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research grants to A.J.-A.
qPCR lentivitral titration kit | ABM | #LV900 | |
speedy virus purification solution | ABM | #LV999 | |
pCMV-dR8.2 | Addgene | #8455 | |
pCMV-VS.VG | Addgene | #8454 | |
Distilled water | Gibco | #15230162 | |
200 mM L-Glutamine | Gibco | #25030081 | |
35 mm Nunc culture dishes | Gibco | #174913 | |
PowerUP SYBR green master mix | life technologies | #A25742 | |
BSA V Solution | Sigma Aldrich | #A-8412 | |
CaCl2 • 2H2O | Sigma Aldrich | #C-7902 | |
Camptothecin | Sigma Aldrich | #C-9911 | |
Chicken Egg White Trypsin Inhibitor | Sigma Aldrich | #10109878001 | |
Cytosine beta-D-Arabino Furanoside | Sigma Aldrich | #C-1768 | |
D-(+)-Glucose | Sigma Aldrich | #G-7528 | |
DNase1 | Sigma Aldrich | #11284932001 | |
Eagle-minimal essential medium | Sigma Aldrich | #M-2279 | |
Glycine | Sigma Aldrich | #G-5417 | |
Heat inactivated dialyzed Fetal Bovine Serum | Sigma Aldrich | #F-0392 | |
Hepes Buffer | Sigma Aldrich | #H-0887 | |
Hydrogen peroxide | Sigma Aldrich | #216763 | |
50 mg/mL Gentamycin | Sigma Aldrich | #G-1397 | |
MgSO4 | Sigma Aldrich | #M-2643 | |
N-Methyl-D-aspartic acid | Sigma Aldrich | #M-3262 | |
Phenol Red Solution | Sigma Aldrich | #P-0290 | |
Trypsin | Sigma Aldrich | #T-4549 | |
Lipofectamine 3000 | Thermo Fisher Scientific | L3000-008 | |
p3000 enhancer reagent | Thermo Fisher Scientific | L3000-008 | |
Opti-MEM I Reduced Serum Medium | Thermo Fisher Scientific | 31985070 | |
KCl | VWR | #CABDH9258 | |
NaCl | VWR | #CABDH9286 | |
NaH2PO4H2O | VWR | #CABDH9298 | |
Poly D-lysine | VWR | #89134-858 | |
DMEM | Wisent | #319-005-CL | |
FBS | Wisent | #080-450 |