This work describes methods to establish acute and chronic hyperglycemia models in zebrafish. The aim is to investigate the impact of hyperglycemia on physiological processes, such as constitutive and injury-induced neurogenesis. The work also highlights the use of zebrafish to follow radiolabeled molecules (here, [18F]-FDG) using PET/CT.
Hyperglycemia is a major health issue that leads to cardiovascular and cerebral dysfunction. For instance, it is associated with increased neurological problems after stroke and is shown to impair neurogenic processes. Interestingly, the adult zebrafish has recently emerged as a relevant and useful model to mimic hyperglycemia/diabetes and to investigate constitutive and regenerative neurogenesis. This work provides methods to develop zebrafish models of hyperglycemia to explore the impact of hyperglycemia on brain cell proliferation under homeostatic and brain repair conditions. Acute hyperglycemia is established using the intraperitoneal injection of D-glucose (2.5 g/kg bodyweight) into adult zebrafish. Chronic hyperglycemia is induced by immersing adult zebrafish in D-glucose (111 mM) containing water for 14 days. Blood-glucose-level measurements are described for these different approaches. Methods to investigate the impact of hyperglycemia on constitutive and regenerative neurogenesis, by describing the mechanical injury of the telencephalon, dissecting the brain, paraffin embedding and sectioning with a microtome, and performing immunohistochemistry procedures, are demonstrated. Finally, the method of using zebrafish as a relevant model for studying the biodistribution of radiolabeled molecules (here,[18F]-FDG) using PET/CT is also described.
Hyperglycemia is defined as excessive blood glucose levels. Although it could reflect a situation of acute stress, hyperglycemia is also a condition that often leads to a diagnosis of diabetes, a chronic disorder of insulin secretion and/or resistance. In 2016, the number of adults living with diabetes has reached 422 million worldwide, and each year, 1.5 million people die from this disease, making it a major health problem1. Indeed, uncontrolled diabetes leads to several physiological disorders affecting the cardiovascular system, kidneys, and the peripheral and central nervous systems.
Interestingly, acute and chronic hyperglycemia may alter cognition and contribute to both dementia and depression2,3,4,5,6. In addition, the admission of patients with hyperglycemia has been associated with worse functional, neurological, and survival outcomes after ischemic stroke7,8,9,10,11. It was also shown that hyperglycemia/diabetes affect adult neurogenesis, a process leading to the generation of new neurons, by impacting neural stem cell activity and neuronal differentiation, migration, and survival2,12.
In contrast to mammals, teleost fish, like zebrafish, display intense neurogenic activity throughout the whole brain and exhibit an outstanding capacity for brain repair during adulthood13,14,15,16. Notably, such capacities are possible due to the persistence of neural stem/progenitor cells, including radial glia and neuroblasts17,18,19. In addition, the zebrafish has recently emerged as a model for studying metabolic disorders, including obesity and hyperglycemia/diabetes20,21,22.
Although the zebrafish is a well-recognized model of hyperglycemia and neurogenesis, few studies have investigated the impact of hyperglycemia on brain homeostasis and cognitive function12,23. To determine the impact of hyperglycemia on constitutive and injury-induced brain cell proliferation, a model of acute hyperglycemia was created through the intraperitoneal injection of D-glucose. In addition, a model of chronic hyperglycemia was reproduced through the immersion of fish in water supplemented with D-glucose12. Zebrafish exhibit many advantages in research. They are cheap, easy to raise, and transparent during the first stages of development, and their genome has been sequenced. In the context of this work, they also display several additional advantages: (1) they share similar physiological processes with humans, making them a critical tool for biomedical research; (2) they allow for the quick investigation of the impact of hyperglycemia on brain homeostasis and neurogenesis, given their widespread and strong neurogenic activity; and (3) they are an alternative model, allowing for the reduction of the number of mammals used in research. Finally, zebrafish can be used as a model for testing the biodistribution of radiolabeled molecules and potential therapeutic agents using PET/CT.
The overall goal of the following procedure is to visually document how to set up models of acute and chronic hyperglycemia in zebrafish, use zebrafish to assess brain remodeling in hyperglycemic conditions, and monitor radiolabeled molecules (here, [18F]-FDG) using PET/CT.
Adult wildtype zebrafish (Danio rerio) were maintained under standard photoperiod (14/10 h light/dark) and temperature (28 °C) conditions. All experiments were conducted in accordance with the French and European Community Guidelines for the Use of Animals in Research (86/609/EEC and 2010/63/EU) and were approved by the local Ethics Committee for animal experimentation.
1. Establishing a Model of Acute Hyperglycemia in Zebrafish
2. Establishing a Model of Chronic Hyperglycemia in Zebrafish
3. Measuring Blood Glucose Levels in Zebrafish
4. Analyzing Brain Cell Proliferation Following Hyperglycemia
5. Imaging the Biodistribution of Radiolabeled Molecules by PET/CT in Zebrafish: Fluorodeoxyglucose ([18F]-FDG) to Analyze Glucose Metabolism
Using the procedures described in this article, the intraperitoneal injection of D-glucose (2.5 g/kg bodyweight) was performed on adult zebrafish and led to a significant increase in blood glucose levels 1.5 h after injection (Figure 1A). 24 h post-injection, the blood glucose levels were similar between D-glucose and PBS-injected fish12. For chronic treatment, zebrafish were immersed in D-glucose water (111 mM) and became hyperglycemic at the end of their 14 days of treatment (Figure 1B), as was previously shown12,22.
To investigate the impact of hyperglycemia on brain cell proliferation, PCNA immunohistochemistry was performed on zebrafish brains following the induction of acute and chronic hyperglycemia. Although acute hyperglycemia did not impact brain cell proliferation12, chronic hyperglycemia induced a significant decrease in neural stem cell proliferation along the ventricle, as previously shown by Dorsemans and colleagues (2016). Indeed, the number of PCNA-positive cells was reduced in the subpallium (Vv/Vd), the pallium (Dm), and the regions surrounding the lateral and posterior recess of the caudal hypothalamus (LR/PR) (Figure 2).
Injury-induced neurogenesis was also studied after the mechanical injury of the telencephalon under acute and chronic hyperglycemia. As previously described after brain injury in zebrafish, a first parenchymal proliferation of microglial cells and oligodendrocytes occurred, followed by a strong up-regulation of proliferation at the ventricular layer 7 days after the injury25,27,28,29,30. Acute hyperglycemia did not modulate the initial step of proliferation in the brain parenchyma. In contrast, chronic hyperglycemia impaired brain cell proliferation along the telencephalic ventricles 7 days after injury (Figure 3).
The zebrafish model is also interesting for monitoring the biodistribution of radiolabeled molecules using PET/CT imaging. Here, [18F]-FDG was intraperitoneally injected into adult zebrafish. After 30 min, PET/CT acquisition shows that the glucose is distributed not only at the site of injection, but also in the head of the fish, including the brain, and along the spinal cord (Figure 4).
Figure 1: Acute and chronic models of hyperglycemia in zebrafish. (A) The intraperitoneal injection of D-glucose (2.5 g/kg bodyweight) results in a significant increase in blood glucose levels 1.5 h after the injection (n = 3). (B) The immersion of zebrafish in D-glucose water (111 mM) for 14 days results in a significant increase in blood glucose levels (n = 15). Please click here to view a larger version of this figure.
Figure 2: Chronic hyperglycemia impairs brain cell proliferation after 14 days of treatment. Proliferative cells are labeled in green with a PCNA antibody. Cell nuclei are counterstained with DAPI (blue). Chronic hyperglycemia decreases brain cell proliferation after 14 days of treatment in the subpallium (A), in the pallium (B), and in the caudal hypothalamus around the lateral and posterior recess of the ventricle (C). Scale bar = 120 µm (A and B), 200 µm (C). Please click here to view a larger version of this figure.
Figure 3: Stab wound injury of the telencephalon upregulates brain proliferation at 7 days post-lesion. (A) Schematic overview of a transversal section of the zebrafish telencephalon at the level indicated in the upper sagittal. Schema have been taken from the zebrafish brain atlas31. The red dots indicate proliferating cells32,33. The needle indicates the site of the lesion. (B) PCNA (green) immunohistochemistry 7 days after brain injury shows a strong upregulation of proliferation along the brain ventricle in the injured telencephalon. Scale bar = 200 µm. Please click here to view a larger version of this figure.
Figure 4: PET/CT imaging of [18F]-FDG (20 MBq injected) 30 min after the intraperitoneal injection. Representative images of PET/CT imaging show a wide distribution of [18F]-FDG in the body of the zebrafish, including the head, the brain, and the spinal cord. Please click here to view a larger version of this figure.
This work describes various methods to establish acute and chronic models of hyperglycemia in zebrafish. The main advantages of these procedures are that: (1) they allow for a reduction in the number of mammals used for research, (2) they are simple to set up and quick to implement, and (3) they are economical. Therefore, such models allow for the investigation of the impact of hyperglycemia on a large number of animals to study its impact on different physiological processes, including atherothrombosis, cardiovascular dysfunctions, retinopathies, blood-brain barrier leakage, and constitutive and regenerative neurogenesis. This work describes how to proceed with investigations on the effects of hyperglycemia on brain cell proliferation under normal or injury-induced conditions.
One critical limitation of the chronic hyperglycemia procedure is that, in some experiments, some fish do not display hyperglycemia after the chronic immersion in D-glucose water (111 mM for 14 days). The percentage of responsive and non-responsive fish has been previously estimated by Dorsemans and colleagues (2016) to be 83% versus 17%, respectively. It is possible that fish display individual susceptibilities according to their age, sex, and capacity to compensate for hyperglycemia by making more pancreatic β-cells34,35. For acute hyperglycemia, the blood glucose levels are quite homogeneous 1.5 h after the injection, demonstrating the robustness of the method.
A critical step of this procedure concerns blood-glucose-level measurements. The quantity of blood that fills the eye cavity is, in rare cases, too low to allow for the loading of the glucometer test strip. In addition, the fish should not stay on ice for too long in order to avoid blood coagulation. However, they should remain on ice for a time sufficient to ensure the induction of anesthesia and the death of the animals. It is also important to mention that, for acute hyperglycemia, the volume of D-glucose injected should be altered to account for the size of the fish. The 50 µL intraperitoneal injection is designed for a medium-sized fish (0.5 g). Indeed, a small fish might not be able to receive a 50 µL intraperitoneal injection and the volume of injection must be reduced to prevent animal suffering and to avoid solution being pushed straight back out by pressure.
Another critical step is the reproducibility of the stab wound injury of the adult telencephalon; which requires some technical experience. Additionally, counting should be performed on three successive sections of a region of interest and in at least three animals. Automated counting in larger brain areas can reveal important information concerning the global effect of hyperglycemia on the process of neurogenesis.
Another reason to use zebrafish is for the ability monitor the biodistribution of radiolabeled molecules using PET/CT. Here, [18F]-FDG was used, and its distribution throughout the zebrafish body was demonstrated, notably including the brain and the spinal cord. Such techniques are of particular interest when determining the delivery and bioaccumulation of potential therapeutic agents in in vivo models. This technique also represents an alternative method to investigate the ability of some molecules to cross through the blood-brain barrier and to determine their potential effects on the central nervous system under physiological or pathophysiological conditions. Indeed, hyperglycemia and hypoglycemia are known to modulate blood-brain barrier permeability36.
One critical limitation of PET/CT imaging in zebrafish after intraperitoneal injection is the necessity to anesthetize the fish in order to avoid any movement during the acquisition. Such anesthesia could strongly reduce the heart rate and therefore the radiotracer biodistribution. To solve this problem, fish can be injected and allowed to recover in fresh water for a few minutes or hours, depending the imaging protocol and the half-life of the radioisotope used. In addition, the intraperitoneal injection could result in the strong accumulation of signal in the peritoneal cavity.
To conclude, this work described efficient methods to establish models of hyperglycemia in zebrafish and to monitor radiolabeled-molecule distribution. Such approaches could open a field of research relating to the investigation of the impact of metabolic disorders on brain homeostasis and on the biodistribution of potential therapeutic agents.
The authors have nothing to disclose.
We greatly thank Direction des Usages du Numérique (DUN) from La Réunion University for editing the video (in particular, Jean-François Février, Eric Esnault, and Sylvain Ducasse), Lynda-Rose Mottagan for the voiceover, Mary Osborne-Pellegrin for proofreading the voice-over, and the CYROI platform. This work was supported by grants from La Réunion University (Bonus Qualité Recherche, Dispositifs incitatifs), Conseil Régional de La Réunion, European Union (CPER/FEDER), and Philancia association. ACD is a recipient of a fellowship grant from the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, La Réunion University (Contrat Doctoral).
1mL Luer-Lok Syringe | BD, USA | 309628 | |
4',6'-diamidino-2-phenylindole (DAPI) | Sigma-Aldrich, Germany | D8417 | |
7 mL bijou container plain lab | Dutscher, France | 080171 | |
D-glucose | Sigma-Aldrich, Germany | 67021 | |
Digital camera | Life Sciences, Japan | Hamamatsu ORCA-ER | |
Disposable base molds | Simport, Canada | M475-2 | |
Donkey anti-rabbit Alexa fluor 488 | Life Technologies, USA | A21206 | |
Embedding center | Thermo Scientific, USA | Shandon Histocentre 3 | |
Fluorescence microscope | Nikon, Japan | Eclipse 80i | |
Fluorodeoxyglucose (18F-FDG) | Cyclotron, France | ||
Glucometer test strip | LifeScan, France | One-Touch 143 Ultra | |
Goat anti-mouse Alexa fluor 594 | Life Technologies, USA | A11005 | |
In-Vivo Imaging System | TriFoil Imaging, Canada | Triumph Trimodality | |
Microtome | Thermo Scientific, USA | Microm HM 355 S | |
Monoclonal mouse anti-PCNA | DAKO, USA | clone PC10 | |
Paraformaldehyde (PFA) | Sigma-Aldrich, Germany | P6148-500G | |
Polyclonal rabbit anti-GFAP | DAKO, USA | Z033429 | |
Slide drying bench | Electrothermal, USA | MH6616 | |
Sodium chloride | Sigma-Aldrich, Germany | S9888 | |
Sodium citrate trisodium salt dehydrate | Prolabo, France | 27833.294 | |
Sterile needle | BD Microlance 3 | 30 G 1/2 ; 0.3 mm x 13 mm | |
Student Dumont #5 Forceps | Fine Science Tools | 91150-20 | |
Student surgical scissors | Fine Science Tools | 91400-14 | |
Superfros Plus Gold Slides | Thermo Scientific, USA | FT4981GLPLUS | |
Surgical microscope | Leica, France | M320-F12 | |
Tissue embedding cassettes | Simport, Canada | M490-10 | |
Tissue embedding medium | LeicaBiosystems, USA | 39602004 | |
Toluene | Sigma-Aldrich, Germany | 244511 | |
Tricaine MS-222 | Sigma-Aldrich, Germany | A5040 | |
Triton X100 | Sigma-Aldrich, Germany | X100-500 mL | |
Vectashield medium | Vector Laboratories, USA | H-1000 | |
Xylene | Sigma-Aldrich, Germany | 534056 | |
Fish Strain | AB | ||
Saline phosphate buffer (10X PBS) pH 7.4 (for 1 liter) | For preparing 10X PBS, add the following salts and complete to 1 liter with distilled water | ||
Potassium chloride (MM : 74.55 g/mol): 2.00 g | Sigma-Aldrich, Germany | 746436 | |
Potassium phosphate monobasic (MM: 136,09 g/mol): 2.40g | Sigma-Aldrich, Germany | 795488 | |
Sodium chloride (MM : 58.44 g/mol): 80.00 g | Sigma-Aldrich, Germany | S9888 | |
Sodium phosphate dibasic (MM: 141,96 g): 14,40 g | Sigma-Aldrich, Germany | 795410 |