This article describes the protocol for culturing low-density primary hippocampal neurons growing on glass coverslips inverted over a glial monolayer. The neuron and glial layers are separated by paraffin wax beads. The neurons grown by this method are suitable for high-resolution optical imaging and functional assays.
The ability to probe the structure and physiology of individual nerve cells in culture is crucial to the study of neurobiology, and allows for flexibility in genetic and chemical manipulation of individual cells or defined networks. Such ease of manipulation is simpler in the reduced culture system when compared to the intact brain tissue. While many methods for the isolation and growth of these primary neurons exist, each has its own limitations. This protocol describes a method for culturing low-density and high-purity rodent embryonic hippocampal neurons on glass coverslips, which are then suspended over a monolayer of glial cells. This 'sandwich culture' allows for exclusive long-term growth of a population of neurons while allowing for trophic support from the underlying glial monolayer. When neurons are of sufficient age or maturity level, the neuron coverslips can be flipped-out of the glial dish and used in imaging or functional assays. Neurons grown by this method typically survive for several weeks and develop extensive arbors, synaptic connections, and network properties.
The brain is organized into intricate networks of neurons. The contribution of individual neurons to network activity and brain function can be studied by selective alteration of their molecular composition and perturbance of their physiological properties. Genetic and chemical manipulation of individual neurons is arguably easier in cultured neurons than in intact brain tissue, unencumbered by the latter's cellular heterogeneity and complexity. Neurons in culture develop well-defined axonal and dendritic arbors and form extensive synaptic connections with each other.
While neuron culture from adult animals or from other regions of the nervous system is possible, embryonic hippocampal cultures are frequently preferred due to their defined pyramidal cell population and relatively low glial density 1,2. Hippocampal neurons grown at low density in culture are particularly amenable to the study of subcellular localization, protein trafficking, neuronal polarity and synapse development. Neurons in culture have also been extensively employed in studying molecular processes in synaptic plasticity 3,4,5,6. Neuron culture preparations from mice with global genetic deletions that do not survive postnatally have been especially useful in studying cellular and synaptic roles of certain genes 7.
As in the brain, cultured hippocampal neurons are dependent on trophic support from glial cells. This complicates their culture, and has led to the development of several different methods by which this support is supplied. One commonly used method involves plating neurons directly onto a monolayer of glial cells 8, or allowing contaminant glial cells from the acquired hippocampal tissue to proliferate and form a monolayer beneath the neurons 9. While this method has found some success, the impurity of the resulting neuronal culture is disadvantageous for imaging experiments. Another commonly used method of neuron culture is to leave-out the glial feeder layer altogether, and instead provide trophic support in the form of a defined growth medium 10.
Here, we describe the "sandwich" or "Banker" method of neuron culture 2,11. This method involves plating the hippocampal neurons on glass coverslips, which are then suspended over a monolayer of glial cells separated by paraffin wax beads. This facilitates long-term culture of a homogenous population of neurons without contaminating glia while allowing for trophic support from the underlying glial monolayer. When neurons are of sufficient age or maturity level, the neuron coverslips can be flipped-out of the glial dish and used in imaging or functional assays.
All experiments and protocols using laboratory animals were approved by the University of Manitoba animal ethics committee and were compliant with the guidelines of the Canadian Council on Animal Care.
1. Preparation of Instruments, Buffers and Solutions
2. Glia Culture Preparation
3. Coverslip Preparation
4. Dissection of Hippocampus and Plating Neurons
In this "sandwich" method of primary nerve cell culture, hippocampal neurons (Figure 3) grow on a bed of glial cells (Figure 1) separated by paraffin beads (Figure 2). This ensures that neurons selectively grow on glass coverslips with minimal glial cell contamination but receive adequate trophic support from glia growing on the tissue culture dish. Typically, neurons can be maintained in culture for >3 weeks and develop extensive arborisation with well-developed axons and dendrites identified by their typical dephospho-Tau and MAP2 immunostaining, respectively (Figure 4). Mature neurons develop synaptic spines identified by selective localization of postsynaptic marker Drebrin1 to these compartments. These synaptic spines are closely apposed to presynaptic specializations, which are identified by synaptic vesicle marker Synapsin1 immunostaining. The proximity of pre- and postsynaptic sites indicates well-developed and correctly aligned synapses. These primary neurons are well-suited for functional and structural studies of neurons and synapses. These include, but are not limited to, studies of signal transduction, neuronal polarity, subcellular trafficking and synapse development and plasticity.
Figure 1. Phase contrast images of glial cultures taken 1 day, 7 days, or 14 days after plating from frozen glial stock. Scale bar, 500 µm. Please click here to view a larger version of this figure.
Figure 2. High-resolution images of coverslips prepared with paraffin beads. (A, B) Examples of properly applied paraffin beads. (C, D) Examples of incorrectly applied paraffin beads. α: More than one bead was applied at the same location. β: The bead failed to be properly situated on the coverslip. χ: The bead was applied too close to the center of the coverslip. δ: The bead was too high. Please click here to view a larger version of this figure.
Figure 3. Phase contrast images of the developmental stages of primary neurons in culture. Scale bar, 100 µm. Please click here to view a larger version of this figure.
Figure 4. Immunofluorescence images of primary neurons at 17 days in vitro. The neurons were fixed with 4% formaldehyde and 4% sucrose in PBS for 12 min, and then permeabilized with 0.25% Triton X-100 for 5 min. After blocking with 10% BSA in PBS for 30 min, the neurons were incubated overnight at 4 °C with primary antibodies applied in 3% BSA in PBS. Primary antibodies were used as follows: anti-synapsin I (rabbit, 1:2,000), anti-drebrin (mouse IgG1, 1:8, clone M2F6, hybridoma supernatant), anti-MAP2 (chicken polyclonal IgY, 1:5,000), and anti-Tau-1 (mouse IgG2a, 1:2,000, clone PC1C6; recognizes dephosphorylated tau). The cells were then washed with PBS and incubated with appropriate species-or isotype-specific secondary antibodies in 3% BSA in PBS for 1 h at 37 °C. Secondary antibodies used were as follows: Alexa 488-conjugated anti-mouse IgG2a (1:500), Alexa 568-conjugated anti-rabbit (1:500), Alexa 647-conjugated anti-mouse IgG1 (1:500), and AMCA-conjugated anti-chicken IgY (donkey IgG, 1:200). Scale bar, 10 µm and 2.5 µm, as indicated. Please click here to view a larger version of this figure.
While the "sandwich" method of culturing neurons has been well-described elsewhere 2,11, there are several steps throughout the protocol that are quite difficult to describe in text alone, which can lead to frustration for investigators who wish to adopt it.
The method can be divided into three broad workflows: glial culture, coverslip preparation and neuron culture and maintenance. Each of the three preparations are critical for high-quality neuron cultures and several important considerations must be kept in mind. Before plating neurons, the glial feeder layer should ideally be a homogenous population of astrocytes and be between 50-70% confluence. This would ensure sufficient trophic support from the glial feeder layer. It is important to ensure that the astroglial culture has minimal contamination of other cell types, particularly microglia, which are loosely attached and rounded cells. Microglia release cytokines, which are detrimental to neuron health and survival 12. The serum, either horse serum or bovine growth serum, can be variable from lot to lot. Careful screening of several lots of serum should be performed before deciding to use a specific lot.
Coverslip preparation is another important step. The quality of the glass and the protocol used in its cleaning are critical for healthy well-developed neurons. If the method is being newly adopted in a lab, it would be worth testing glass coverslips from several suppliers. For cleaning of the coverslips, some labs soak coverslips in 70% nitric acid for 18-36 h while others do so for only 1 h in a sonicator. An important criterion of clean coverslips is that the poly-L-lysine solution should spread evenly on the surface. Another important consideration is that the paraffin wax beads applied to the coverslips should be of appropriate height and diameter and be heated to the right temperature, as outlined in the protocol.
For obtaining neurons, hippocampi can be dissected from embryonic day 17-19 rats. Though dissection at this stage leads to very few glial cells, glial proliferation can be arrested by adding the anti-mitotic agent Ara-C after 2-3 days of culture. Trituration of trypsinized hippocampal tissue by fire-polished pipette tips is critical to dissociate the tissue into individual cells without damaging the cells themselves. The neuronal growth and maintenance medium used in this protocol is Neurobasal + L-Glutamine + B27 supplement. L-Glutamine may be substituted by GlutaMAX, which is more stable in the culture medium. The quality of the B27 supplement can vary from lot to lot, and so it should be tested before using a specific lot for longer term culture. A poor lot of B27 may cause neurons to clump. Alternate products such as GS21 and SM1 have been found to be good substitutes for B27. Neurons grown for longer than a week should be fed with fresh medium every week, wherein a third of the medium is replaced every week.
This method of culturing nerve cells can prove invaluable to experiments that rely on pure neuronal populations with little or no glial contamination. Low-density neurons grown using this method typically survive for several weeks with well-developed arbors, synaptic connections and network properties.
The authors have nothing to disclose.
This work was supported by CIHR MOP-142209 to TJS.
Dissection Instruments | |||
Micro Dissecting Scissors | Roboz | RS-5910 | |
Micro Dissecting Spring Scissors | Roboz | RS-5650 | |
Micro Dissecting Spring Scissors | Roboz | RS-5605 | |
Dumont Forceps (#5) | Roboz | RS-5045 | |
Dumont Forceps (#PP) | Roboz | RS-4950 | |
Name | Company | Catalog Number | コメント |
Tissue Preparation | |||
Trypsin (2.5%) | Gibco | 15-090-046 | |
Trypsin-EDTA (0.25%) | Gibco | 25-200-072 | |
Swinnex Filter Holder, 25 mm | EMD Millipore | SX0002500 | Used as cell strainer. Assemble first with filter and autoclave |
Isoflorane | Pharmaceutical Partners of Canada Inc. | CP0406V2 | |
Hemocytometer | Hausser Scientific | 1492 | |
Grade 105 Lens Cleaning Tissue | GE Healthcare | 2105-841 | Used as cell strainer. Assemble first in filter holder and autoclave |
Glass Pasteur pipettes with cotton filter | VWR | 14672-412 | |
HEPES (1 M) | Gibco | 15-630-080 | |
Hank's Balanced Salt Solution without Calcium, Magnesium, Phenol Red (HBSS, 10x) | Gibco | 14-185-052 | |
Glass Pasteur pipettes | VWR | 14672-380 | |
Deoxyribonuclease I from bovine pancreas (Dnase) | Sigma-Aldrich | DN25-100mg | |
Butane bunsen burner | Wall-Lenk Mfg. Co. | Model 65 | |
Centrifuge | Eppendorf | 5810R | |
Name | Company | Catalog Number | コメント |
Tissue Culture | |||
Penicillin-Streptomycin (10,000 U/mL) | Gibco | 15-140-122 | |
Petri Dish (100 mm) | Fisher | FB0875712 | |
Petri Dish (60 mm) | Fisher | FB0875713A | |
Horse Serum | Gibco | 16050-122 | Can be used in place of BGS, but each lot must be tested due to inter-lot variation. Heat-inactivation of serum is recommended. |
Sodium Hydroxide | Fisher Scientific | S318-1 | |
Sodium Pyruvate | Sigma-Aldrich | P2256 | |
Minimum Essential Medium (MEM) | Gibco | 11-095-080 | |
Neurobasal Medium | Gibco | 21-103-049 | |
L-Glutamine (200 mM) | Gibco | 25-030-081 | |
GlutaMAX Supplement | Gibco | 35050061 | Can be used in place of L-Glutamine in the NBG medium |
Culture Dish (60 mm) | Corning, Inc | 353002 | |
Culture Flasks (75 cm^2) | Greiner Bio-One | 658170 | |
Cytarabine (Ara-C) | Sigma-Aldrich | C3350000 | |
D-(+)-Glucose | Sigma-Aldrich | G8270 | |
Bovine Growth Serum (BGS) | HyClone | SH3054103 | Heat-inactivation is recommended before use. |
B27 Supplement (50x) | Gibco | 17-504-044 | |
Dimethyl Sulfoxide (DMSO) | Sigma-Aldrich | D8418-100ml | |
Cryogenic Vials | VWR | 89094-806 | |
DL-2-Amino-5-phosphonopentanoic acid (APV) | Sigma-Aldrich | A5282 | |
Name | Company | Catalog Number | コメント |
Coverslip Preparation | |||
Sodium tetraborate decahydrate (borax) | Sigma-Aldrich | B9876-1KG | |
Poly-L-Lysine Hydrobromide | Sigma-Aldrich | P2636 | |
Histoplast Paraffin Wax | Fisher | 22-900-700 | |
Gravity Convection Oven | VWR | 89511-404 | Used for alternative coverslip cleaning method discussed in protocol |
Ultrasonic Bath (Sonicator) | Fisher Scientific | 15337400 | |
Nitric Acid | Anachemia | 62786-460 | |
Ceramic Staining Racks | Thomas Scientific | 8542E40 | Used for alternative coverslip cleaning method discussed in protocol |
Coverslips | Glaswarenfabrik Karl Hecht GmbH | 1001/18 | Manufacturer is very important, as neurons do not adhere well to lower quality glass |
Boric Acid | Sigma-Aldrich | B0252 | |
Name | Company | Catalog Number | コメント |
Miscellaneous | |||
Sterile Syringe Filters | VWR | 28145-477 | Used with BD syringe for filter-sterilization |
Syringe | BD | 302832 | Used with VWR sterile syringe filters for fliter-sterilization |
Water Bath | Fisher Scientific | 15-460-16Q | |
Inverted Microscope | Olympus | CKX41 | |
15 mL Conical Sterile Centrifuge Tubes | ThermoScientific | 339650 | |
50 mL Conical Sterile Centrifuge Tubes | ThermoScientific | 339652 |