A surgical procedure was developed to deliver mammary tumor cells to the murine liver via portal vein injection. This model permits investigation of late stages of liver metastasis in a fully immune competent host, including tumor cell extravasation, seeding, survival, and metastatic outgrowth in the liver.
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 – 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 – 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 – 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas.
Breast Cancer Metastasis to the Liver
The liver is a common site of breast cancer metastasis, along with bone and lung1-3. Liver metastasis in breast cancer patients is an independent prognostic factor for very poor outcomes4,5, as median survival of breast cancer patients with liver metastasis ranges from 4.8 to 15 months6-9. In contrast, breast cancer patients with lung or bone metastasis have median survival rates of 9 to 27.4 months8,9 and 16.3 to 56 months8,10-12, respectively. Metastasis is a multistep process, referred to as the metastatic cascade, which begins with tumor cell dissemination in the primary tumor and ends with patient mortality due to the seeding and outgrowth of circulating tumor cells within a distant organ13-15. Rodent models of metastasis have revealed that the metastatic cascade is remarkably inefficient, with only 0.02 – 10% of circulating tumor cells establishing overt metastasis16,17. One major bottleneck of metastatic inefficiency is dictated by the unique tissue microenvironments at secondary sites, called metastatic niches18, highlighting the importance of understanding site-specific metastasis. The metastatic niche is unique to the site of recurrence, and is, in part, characterized by deposition of distinct extracellular matrix proteins19,20, infiltration of various immune cell populations21-23, and altered tissue homeostasis including dysregulated production of numerous cytokines, chemokines, and growth factors15,18,24,25. Thus, an understanding of the tissue specific metastatic niche precedes an understanding of how to target metastatic disease. However, robust models of liver metastasis are lacking. Further, improved models of liver metastasis will be essential to identifying novel targets and effective treatments for breast cancer patients with liver metastases.
Established Models to Study Breast Cancer Metastasis to the Liver
Currently available models to study breast cancer metastasis to the liver include human cancer cell xenografts in immune compromised mice. These models typically use well-studied human breast cancer cell lines such as MCF-7 and MDA-MB-231 and Nude, Rag1-/-, or SCID immune compromised murine hosts26-29. Xenograft models provide the advantage of involving human derived cancer cell lines, however, given the recent appreciation for immune cells in metastasis30-32 and in therapeutic resistance33-35, the study of metastasis in a fully immune competent host is paramount. Models to study breast cancer metastasis to the liver in immune competent hosts include orthotopic injection of syngeneic tumor cells (e.g., 4T1 and D2A1 cell lines) into the mammary fat pad, with or without surgical resection of the primary tumor, and subsequent assessment of metastasis36-38. Of note, the rate of liver metastasis from orthotopic transplant models is very low or non-existent compared to other metastatic sites such as lung39,40, or occurs after lung metastasis is established, complicating the study of liver-specific metastasis37,39.
Tumor explants from spontaneous genetically engineered breast cancer models can be re-injected into the mammary fat pads of naïve hosts as syngeneic tumor cells. For example, it was recently reported that spontaneous tumors from K14CreECadf/fP53f/f mice, which model invasive lobular breast carcinoma, develop tumors when orthotopically injected into wildtype hosts. Following surgical resection of these tumors once they reach 15 mm2, 18% of the mice progressed to liver metastasis40,41. A third approach to model liver metastasis utilizes spontaneous metastasis in genetically engineered mice. To date, reports of spontaneous murine models of breast cancer metastasis that readily spread to the liver are uncommon. Exceptions include the H19-IGF2, the p53fp/fp MMTV-Cre Wap-Cre, and the K14CreECadf/fP53f/f genetically engineered mouse models, where liver metastasis develops in a low percentage of mice38,41-43. Thus, while genetically engineered mouse models facilitate the study of all stages of the metastatic cascade, providing powerful and clinically relevant models, they are limited due to low rates of liver metastasis38.
Several metastasis models bypass the initial steps of the metastatic cascade including dissemination of tumor cells from the primary tumor and intravasation. These models permit investigation into the later steps of the metastatic cascade, from extravasation to establishment of tumors at secondary sites. The intracardiac injection model delivers tumor cells into the left ventricle, which distributes tumor cells into the circulatory system via the aorta. Intracardiac injection requires ultrasound guided imaging of the injection site or other imaging modalities such as bioluminescence of luciferase tagged cells to confirm successful injection. Tumor cell injection via the left ventricle may result in bone, brain, lung, and/or liver metastasis, amongst other organs44-48. Because of multi-organ metastases, these mice frequently need to be euthanized prior to development of overt liver metastasis, negating the ability to fully investigate metastatic growth within the liver. An alternative approach that significantly minimizes the development of multi-site metastasis is the intrasplenic injection model. Intrasplenic injection delivers tumor cells via the splenic vein that joins with the superior mesenteric vein to become the portal vein49,50. Animals can be monitored for outgrowth of metastatic lesions in the liver because formation of metastases at other sites is rare, and as a result, the animal's overall health is maintained49,50. However, it is important to note that the intrasplenic model requires splenectomy to avoid splenic tumors49,50, a procedure that impacts immune function. For example, myocardial ischemia reperfusion injury is characterized by infiltration of Ly6C+ monocyte subsets that originate from the spleen and are responsible for phagocytic and proteolytic activity during the wound healing following ischemia51,52. With splenectomy, there is an observed reduction in monocyte populations that assist in wound healing52. Further, splenectomy has been shown to reduce primary tumor growth and lung metastases in a non-small cell lung cancer model, specifically through a reduction in the number of circulating and intra-tumor CCR2+CD11b+Ly6C+ monocytic myeloid cells53. Additionally, splenectomy following intrasplenic injection of colon cancer cells resulted in reduced levels of anti-tumor natural killer cells in mesenteric lymph nodes and elevated liver metastasis54. In sum, these findings suggest that splenectomy compromises the immune system's role with subsequent consequences for metastatic cell fate.
Portal Vein Injection Model of Liver Metastasis
To investigate breast cancer metastasis to the liver in a fully immune competent host, under conditions where mice are not compromised due to multi-organ metastases, a portal vein injection model was developed. Intraportal injection models have been used previously to study liver metastasis of colorectal55,56 and melanoma16 cell lines; here we describe application of the intraportal injection to model syngeneic mammary tumor cell metastasis. This model can be used to study the later stages of the metastatic cascade including breast cancer cell extravasation and seeding, tumor cell fate decisions regarding death/proliferation/dormancy, and outgrowth into overt lesions. In this model, syngeneic mammary tumor cell lines are injected via the portal vein of immune competent Balb/c female mice, a method that delivers tumor cells firstly and directly to the liver without removal of the spleen. To develop this model, the use of four mammary tumor cell lines that range in their metastatic capability from low to high were employed: D2.OR, D2A1, and 4T1, and have employed D2A1 tagged with green fluorescent protein (D2A1-GFP) to investigate early time-points after tumor cell injection. 4T1 is a highly metastatic cell line derived from the 410.4 tumor that spontaneously arose in an MMTV+ Balb/c female mouse36,37 and metastasizes to lung, liver, brain, and bone from mammary fat pad primary tumors39,57,58. D2A1 tumor cells were also originally derived from a spontaneous mammary tumor arising in a Balb/c host after transplant of D2 hyperplastic alveolar nodule cells, and are confirmed to be metastatic from the primary tumor to the lung59,60. D2.OR tumor cells are a non-metastatic sister line to the D2A1 line and, although they escape the primary tumor and arrive at secondary sites, they rarely establish distant metastases60,61.
Additionally, it is important to avoid use of commonly employed pain management drugs including non-steroidal anti-inflammatory drugs (NSAIDs) during or following the surgical procedure. NSAIDs have anti-tumor activity in certain breast cancers62-65, and some classes of NSAIDs increase the risk of hepatotoxicity66,67, potentially compromising the study of liver metastasis and the liver metastatic niche. Further, studies suggest that NSAIDs directly influence the tissue microenvironment, reducing pro-metastatic extracellular matrix proteins tenascin-C68 and fibrillar collagen62,65. Alternatively, the use of an opioid derivative, buprenorphine, was used because of its efficacy in rodent pain management69 and due to the lack of evidence that opioids have anti-tumor activity70. This portal vein injection model was optimized for smaller injection volumes of 5 – 10 µl to avoid unnecessary damage to the liver. The model was also optimized to include needles with smaller diameter (≥ 32 gauge) and use of hemostatic gauze immediately following injection to minimize blood loss during the procedure. In contrast to these optimized injection parameters, cell numbers should be determined on an individual basis, based on the tumorigenic potential of the cell line. However, starting at ≤ 10,000 cells/injection for long-term studies is recommended. For shorter endpoints (e.g., 24 hr post-injection) considerably more tumor cells (e.g., 1 x 105 – 1 x 106) may be used if warranted. In summary, the portal vein injection model detailed here represents a useful tool for the study of breast cancer metastasis to the liver and circumvents a number of the limitations of other liver metastasis models. This model facilitates study of tumor cell extravasation, seeding, early fate decisions of survival, proliferation, and dormancy, and metastatic outgrowth in immune competent murine hosts.
All animal procedures in this article were reviewed and approved by the Oregon Health & Science University Institutional Animal Care and Use Committee.
1. Preparation of the Surgical Area and Instruments
2. Portal Vein Injection
3. Recovery, Monitoring Rodent Health, and End-point Analyses
The portal vein injection model, in which tumor cells are delivered directly to the liver via a surgical procedure, allows for tumor cell injection into the portal vein. Under antiseptic conditions, in an anesthetized mouse, a ~1-inch surgical incision is made on the left side of the mouse between the median and sagittal planes, starting just above the plane of the fourth inguinal mammary gland teat and ending just below the ribs. The large and small intestines are gently pulled through the incision to provide visualization of the portal vein (Figure 1A). Accurate anatomical identification of the portal vein and successful intra-portal injection can be confirmed by practicing the injection protocol with India ink or a similar dye. Correct injection via the portal vein will result in the ink being delivered immediately and specifically to the liver, and will not result in India ink spread to the lung (Figure 1B). Further, using D2A1 mouse mammary tumor cells tagged with GFP, dispersal of tumor cells throughout the liver is apparent at ninety minutes post-injection, confirming portal vein injection delivery to the liver (Figure 1C). At higher magnification it becomes apparent that at 90 min post-injection, tumor cells are found within sinusoids, as well as within the liver parenchyma in close proximity to portal triads, where the portal vein blood enters the liver (Figure 1C). These data suggest that active tumor cell extravasation is occurring at 90 min post-tumor cell injection. Taken together, these data confirm that the portal vein injection model delivers the injection volume directly to the liver, with ink or tumor cells dispersed throughout the liver and no appreciable transport of injection volume to the lung.
To assess robustness of the portal vein injection model, three separate syngeneic mouse mammary tumor cell lines were tested in adult female Balb/c mice. These mammary tumor lines were selected based on their characterized behavior in mammary fat pad models and include the highly aggressive and metastatic 4T1 cell line, the less aggressive metastatic D2A1 line, and the low/non-metastatic D2.OR line37,61,73,74. 2,000 and 10,000 cells per injection were tested with no notable differences in the time to development of overt metastasis with these low cell concentrations. For these studies surrogate markers of metastasis were used such as lack of grooming, pallor, and weight loss to justify necropsy, upon which the presence or absence of liver metastases were confirmed by visual assessment of the liver and other organs to confirm intra-portal delivery. These data confirm previous reports that the 4T1 and D2A1 cell lines represent more aggressive mammary tumor lines, as shorter metastasis free survival rates are observed compared to mice injected with the less aggressive D2.OR line (Figure 2A). Mice injected with 4T1 or D2A1 tumor cells developed overt liver metastasis by ~ 30 – 40 days post-injection, and some developed metastasis as early as 18 days post-injection (Figure 2A), whereas only one mouse injected with D2.OR cells had developed overt liver metastasis by study end, which was 60 – 65 days post-tumor cell injection. Metastases were subsequently confirmed by sectioning through the liver in 250 µm levels and analyzing hematoxylin and eosin (H&E) stained sections (Figure 2B-D).
In addition to detection of overt metastatic lesions in the mouse liver, the portal vein model can also be utilized to study earlier events in the metastatic cascade including detection of single cells/cell clusters following extravasation, and formation of micro-metastatic lesions. Multiplex immunofluorescence-staining was used to detect 4T1, D2A1, and D2.OR mammary tumor cells in liver when they are present as single cells or micro-metastatic lesions, as H&E is not sufficient to confirm the presence of small lesions. Figure 3A shows a representative Balb/c mouse liver with a putative micrometastatic foci of D2A1 tumor cells that are positive for the epithelial keratin CK18, negative for the pan-immune marker CD45, and negative for the hepatocyte marker Heppar-1. Hepatocytes also stain positive for CK18, necessitating use of Heppar-1 in this staining panel. One important note is that bile duct epithelium and liver progenitor cells stain positive for CK18, requiring careful discrimination between tumor cells and bile ducts, particularly when assessing periportal regions (Figure 3A). An alternative to multiplex immunofluorescence to identify single disseminated cells and micrometastatic foci is to utilize syngeneic mammary tumor lines tagged with enhanced green fluorescent protein (eGFP) and/or luciferase and perform IHC for the tag (Figure 1C). Due to the immunogenicity of eGFP, luciferase, and other proteins, it is essential to use mouse models that are tolerized to these proteins, such as the novel immune competent "glowing head" mouse that expresses eGFP and luciferase in the anterior pituitary gland75. For identification of macrometastatic lesions of untagged syngeneic lines such as the D2A1 tumor line, the CK18/Heppar-1/CD45 multiplex immunofluorescence is ideal (Figure 3B).
Figure 1: Portal Vein Injection Delivers Tumor Cells Directly to the Liver. A) Portal vein injection; the incision is made between the median and left sagittal planes, from above the plane of the fourth inguinal mammary gland teat and ending just below the rib cage. B) Balb/c liver with PBS injection (left). Following India ink injection via the portal vein, the liver (middle) but not the lung (right) takes up ink. C) Representative thin section images of D2A1 mouse mammary tumor cells tagged with GFP in a Balb/c mouse liver at 90 min post-injection of 1 x 106 tumor cells via the portal vein. Livers were formalin fixed, paraffin embedded, sectioned, and stained with anti-GFP antibody for tumor cell detection. Top panel shows dark brown stained tumor cells (arrows) dispersed throughout the liver, asterisk denotes non-specific hepatocyte staining around central veins; scale bar = 300 µm. Lower panels show representative images of tumor cells at 90 min post-injection still closely associated with vasculature; scale bar = 50 µm. Please click here to view a larger version of this figure.
Figure 2: Outgrowth of Mouse Mammary Tumor Cell Lines in the Liver Following Portal Vein Injection. A) Kaplan-Meier curve showing metastasis-free survival rates in mice injected with 2,000-10,000 4T1, D2A1, or D2.OR mouse mammary tumor cells. Mice were injected with tumor cells and monitored for signs of metastasis including lack of grooming, pale eyes, and weight changes. Metastasis was confirmed at time of necropsy and by H&E on histological sections of the livers. N= 2 4T1 2,000 cells; 2 4T1 10,000 cells. N= 2 D2A1 2,000 cells; 3 D2A1 10,000 cells. N= 3 D2.OR 2,000 cells; 3 D2.OR 10,000 cells. Representative H&E images of B) 4T1 lesions at 21 days post-injection of 10,000 cells, C) D2A1 lesions at 26 days post-injection of 10,000 tumor cells, and D) D2.OR lesions at 59 days post-injection of 10,000 cells; scale bars = 75 µm. Similar lesions are observed when 2,000 4T1 or D2A1 tumor cells were injected. No lesions were detected with 2,000 D2.OR cells. No evidence of metastasis in other organs or at the surgical incision site was apparent in any mouse on these studies. Please click here to view a larger version of this figure.
Figure 3: Detection of Single Cells and Metastatic Lesions in the Mouse Liver using Multiplex Immunofluorescence. A) Representative multiplex immunofluorescence of D2A1 tumor cells in a Balb/c mouse liver at 90 min post-injection using the portal vein injection model. Staining was done using a multiplex kit. From left to right shows DAPI; CD45 to mark leukocytes; Heppar-1 to mark hepatocytes; and CK18 to mark tumor cells, hepatocytes, and bile duct epithelium. Merged image shows a putative cluster of CK18+Heppar-1–CD45– D2A1 tumor cells closely associated with a portal triad. Arrow = D2A1 tumor cells, asterisk = bile duct epithelium; scale bar = 25 µm. B) A representative overt D2A1 metastatic lesion using the same staining panel as in A. Tumor cells are CK18+ whereas adjacent hepatocytes are CK18+Heppar-1+; scale bar =25 µm. Images were captured on a microscope with 20 x 0.8, 40 x 1.3, and 60 x 1.4 objectives and CCD camera, using the microscope software. Please click here to view a larger version of this figure.
The Balb/c mouse portal vein injection model permits the study of mammary cancer lesions in the liver in the absence of confounding multi-organ metastasis and in a fully immune competent host. Our protocol is an advancement of previously published surgical procedures that permit access to the portal vein for injection of tumor cells directly into the liver16,55,56. One advancement we have made is to significantly reduce the number of injected tumor cells from ≥ 1 x 105 cells/injection16,55,56 down to ≤ 10,000 tumor cells/injection. We have also expanded the model for the study of breast cancer metastasis to the liver. Using this protocol, two mammary cancer cell lines with known metastatic potential develop liver metastases with shorter latency than a more quiescent mammary tumor cell line. Further, at early time points, tumor cells are distributed throughout the liver parenchyma as single or small groups of single cells after tumor cell injection. The model is poised to address questions of metastatic efficiency including tumor cell extravasation, cell survival, dormancy, and proliferation — all phenotypes that contribute to the development of micro-metastatic and overt metastatic disease in the liver.
It is important to consider numerous aspects of the portal vein injection protocol prior to initiating studies. Carefully deciding on cell lines, cell concentration, total cell number, and end-points of interest based on smaller exploratory studies is highly recommended. Further, the use of immune competent hosts and syngeneic cell lines is of utmost importance for understanding host-tumor cell interactions. The newly developed "glowing head" mouse that expresses eGFP and luciferase from the anterior pituitary gland is an important tool for eliminating host responses to exogenous eGFP and luciferase, proteins often used to tag mammary tumor lines75. Use of the "glowing head" mouse and syngeneic tagged tumor cells will facilitate easy identification of single disseminated cells and micrometastatic foci by IHC without the concern of inflammatory responses to eGFP or luciferase. Similarly, choosing pain management strategies carefully to ensure minimal anti- or pro-tumor impact from the drug treatment regimen is strongly recommended. Critical steps in this protocol include maintaining sterile conditions throughout surgeries to ensure that infection does not occur, as this will confound any results. It is also important that the needle is properly placed in the portal vein to ensure that tumor cells are delivered to the liver. Practicing the protocol with dyes such as India ink will help with this issue. Tumor growth at the skin incision site is the best indicator that improper needle placement occurred. Finally, it is critical that blood loss from the portal vein is adequately controlled and ceases entirely prior to suturing the animal. The use of hemostatic gauze greatly diminishes the risk of uncontrolled blood loss from the portal vein following injection. In our hands, procedural related mortality due to blood loss from the portal vein following injection was reduced from 30% to 2% of mice with the use of hemostatic gauze.
It is important to note that the portal vein injection model does not replicate the full metastatic cascade, but is limited to the study of tumor cell extravasation, tumor cell-niche interactions following extravasation and tumor growth. Models that accurately replicate the full metastatic cascade to the liver, such as occurs in patients, are urgently needed. An additional limitation of the portal vein injection model is that it is confounded by the impact of surgery on the host, with wound healing known to impact disease progression76,77.
The portal vein injection model represents an improvement on other injection models to study liver metastasis, including intracardiac and intrasplenic models. Specifically, the portal vein injection model allows for the study of a larger range of disease progression than the intracardiac model, which is often limited by concomitant metastases in other tissues. Further, the portal vein model is not complicated by removal of the spleen, as is done in the intrasplenic model.
The portal vein injection model may prove a useful tool for the study of liver metastasis in general. Liver metastasis is the most frequent site of metastasis in adenocarcinomas overall, with particularly high rates in pancreatic cancers (85% of metastases are to the liver), colon and rectal adenocarcinomas (>70%), as well as stomach and esophageal (>30%)1. Although spontaneous and orthotopic primary tumor models of pancreatic and colon adenocarcinomas more readily metastasize to the liver78,79, the portal vein injection model may prove useful to understanding the metastatic process of these cancers as controlled delivery of tumor cells permits biochemical, molecular and histological assessments at specified times after tumor cell arrival. In summary, the portal vein injection model represents an important improvement on available liver metastasis models of breast cancer, and may also be applicable to the liver metastasis field in general.
The authors have nothing to disclose.
The authors would like to acknowledge Alexandra Quackenbush for assisting with surgical procedures during filming of the video protocol, Hadley Holden for histological support, Sonali Jindal for input on tumor and liver pathology during method development, and Breanna Caruso for critical review of the manuscript. The D2A1 and D2.OR mammary tumor cells were a gift from Dr. Ann Chambers, the D2A1-GFP tumor cells were a gift from Dr. Jeffrey Green, and the 4T1 tumor cells were a gift from Dr. Heide Ford. The OHSU Advanced Light Microscopy Core at the Jungers Center was utilized for imaging. The work included in this manuscript includes funding from NIH/NCI NRSA F31CA186524 (to ETG) and NIH/NCI 5R01CA169175 (to PS).
1 ml Syringe w/ 26-gauge Needle | BD Syringe | 309597 | For subcutaneous buprenorphine injection; use caution, sharp |
Alcohol Prep Pads | Fisher Scientific | 06-669-62 | For cleaning of abdomen prior to surgical incision |
All Purpose Sponges, Sterile | Kendall | 8044 | 4" x 4", use dipped in sterile saline to keep large and small intestines protected and hydrated during surgery |
Artificial Tears | Rugby | 370114 | Mineral oil 15%, white petrolatum 83%; use to protect eyes during surgery |
Buprenorphine HCl, 0.3 mg/ml | Mfg. by Reckitt Benckiser | NDC-12496-0757-1 | Use at 0.05 – 0.1 mg/kg body weight, 1-2x daily for 72 hours, injected subcutaneously |
Bupivacaine HCl, 0.5% (5 mg/ml) | Mfg. by Humira Inc | NDC-04091163-01 | Use at 0.5%, 1x immediately after surgery, 10 ul injected subcutaneously at incision site |
anti-CD45 antibody | BD Pharmingen | 550539 | Use in multiplex immunofluorescence to exclude leukocytes in identification of metastatic foci |
Celox™ Rapid Hemostatic Gauze | Medtrade Products Ltd. | FG08839011 | Cut into 5mm² pieces, use to stop blood flow out of the portal vein with pressure following injection |
Chemical Depilatory | Use to remove hair from surgical area; multiple suppliers | ||
Chlorhexidine, 2% Solution | Vet One | 1CHL008 | Use caution, do not get chlorhexidine in mucous membranes or ears of the mouse |
anti-CK18 antibody | Abcam | ab53118 | Use in multiplex immunofluorescence to identify metastatic foci |
Cotton Tipped Applicators, Sterile | Fisher Scientific | 23-400-114 | 6" Wooden Shaft 2 pc/envelope |
DMEM, High-Glucose | HyClone | SH30243.01 | Cell culture media base for use with D2A1, D2.OR, and 4T1 mammary tumor cell lines |
Dry Glass Bead Sterilizer | Use between surgeries to sterilize stainless steel tools, use caution, extremely hot; multiple suppliers | ||
Ethanol, 70% solution | Use caution flammable; use to clean surgical area as needed; multiple suppliers | ||
Fetal Bovine Serum | HyClone | SH30071.03 | Cell culture media additive for use with D2A1, D2.OR, and 4T1 mammary tumor cell lines, use at 10% in DMEM high glucose |
Gauze, Sterile | Kendall | 2146 | 2" x 2", use dipped in chlorhexidine 2% solution for cleaning of abdomen prior to surgical incision |
anti-Green Fluorescent Protein antibody | Vector Laboratories | BA0702 | Use to stain for GFP tagged D2A1 or other mammary tumor cell lines |
L-Glutamine 200 mM (100X) | Gibco | 25030-081 | Cell culture media additive for use with D2A1, D2.OR, and 4T1 mammary tumor cell lines, use at 2 mM (1x) in DMEM high glucose |
Heating Pad, x2-3 | Use to maintain body heat during surgery and recovery; multiple suppliers | ||
Hemocytometer | Hausser Scientific | 1483 | For use in cell culture to count cells |
Hemostatic Forceps | Stainless steel; multiple suppliers | ||
anti-Heppar-1 antibody | Dako | M7158 | Use in multiplex immunofluorescence to exclude hepatocytes in identification of metastatic foci |
Insulin Syringe, 0.3 ml, 29-gauge | BD | 324702 | For bupivacaine injection at suture site; use caution, sharp |
Isoflurane | Piramal | NDC-66794-017-25 | Administered at 2.5% |
Isoflurane Vaporizer | VetEquip | 911103 | Use caution, vaporizes anesthetic gases |
Light Source | Use for visualizing the surgical field; multiple suppliers | ||
Neutral buffered formalin, 10% | Anatech Ltd. | 135 | Use caution, toxic; use as a tissue fixative for metastasis endpoints and assesment of metastatic burden by histology |
Opal™ 4-color fIHC kit | PerkinElmer, Inc. | NEL794001KT | Use for multiplex immunofluorescence of Heppar-1/CD45/CK18 to detect metastases in murine liver |
Operating Scissors | Stainless steel; use caution, sharp; multiple suppliers | ||
Penicillin/Streptomycin, 100x | Corning | 30-002-Cl | Cell culture media additive for use with D2A1, D2.OR, and 4T1 mammary tumor cell lines, use at 1x in DMEM high glucose |
Phosphate-buffered Saline | Use at 1x for resuspending tumor cells prior to injection, multiple suppliers | ||
Removable Needle Syringe, 25 ul, Model 1702 | Hamilton | 7654-01 | For portal vein injection; use caution, paricularly while working with tumor cell-loaded needles, sharp when needle is attached |
Scalpel handle | Stainless steel; multiple suppliers | ||
Scalpel blade, #15 | Carbon steel, sterile, size 15; multiple suppliers | ||
Small Hub Removable Needles, 32-gauge | Hamilton | 7803-04 | For portal vein injection, 1" length, point style 4, 12°angle, 33- to 34-gauge reusable needles can also be used; use caution, paricularly while working with tumor cell loaded needles, sharp |
Sodium Hypochlorite | Use caution, corrosive; use at 10% to disinfect workspace and surfaces, multiple suppliers | ||
Sterile Saline | Fisher Scientific | BP358-212 | 0.9% NaCl solution; alternatively, can be homemade and sterile filtered |
Surgical Gloves, Sterile | Multiple suppliers | ||
Sutures, Sterile | Ethicon | J310H | 4-0 27" coated vicryl w/ 22 mm 1/2c taper ethalloy needle; use caution, sharp |
Table Top Portable Anesthesia Machine | VetEquip | 901801 | Use with isoflurane vaporizer for mouse anesthesia |
Thumb Dressing Forceps | Stainless steel, serrated, blunted; multiple suppliers | ||
Towel Drapes, Sterile | Dynarex | 4410 | 18" x 26", to cover heating pad and provide a sterile workspace during surgery |
Trypan Blue | Life Technologies | T10282 | For use in cell culture to assess viability, use 1:1 with cells in 1x PBS |
Trypsin/EDTA, 0.05% (1x) | Gibco | 25300-054 | Use in cell culture to detach tumor cells from tissue culture plates |