A protocol for the extraction and pre-concentration of estradiol from water samples by using an automated and miniaturized system is presented.
A new method for solid phase extraction (SPE) of environmental water samples is proposed. The developed prototype is cost-efficient and user friendly, and enables to perform rapid, automated and simple SPE. The pre-concentrated solution is compatible with analysis by immunoassay, with a low organic solvent content. A method is described for the extraction and pre-concentration of natural hormone 17β-estradiol in 100 ml water samples. Reverse phase SPE is performed with octadecyl-silica sorbent and elution is done with 200 µl of methanol 50% v/v. Eluent is diluted by adding di-water to lower the amount of methanol. After preparing manually the SPE column, the overall procedure is performed automatically within 1 hr. At the end of the process, estradiol concentration is measured by using a commercial enzyme-linked immune-sorbent assay (ELISA). 100-fold pre-concentration is achieved and the methanol content in only 10% v/v. Full recoveries of the molecule are achieved with 1 ng/L spiked de-ionized and synthetic sea water samples.
Sample preparation is an important step in any analytical process. In particular, removal of matrix effects, diminution of interferences, and enrichment of the analyte are necessary to obtain precise results and reach low limits of detection. Endocrine disrupting compounds (EDCs) are of particular concern due to their action on the living organisms even when present at very low levels in the environment. The natural hormone 17β-estradiol is present on the EU water pollution Watch List and prone to be added to the list of priority substances regulated under the European Water Framework Directive. Solid phase extraction (SPE) is commonly applied for the analysis of small pollutants in water, with both chemical 1-5 (chromatography, mass spectrometry) and immunological 6-9 detection methods. The latter gained interest in the field of environmental monitoring, as immunoassays are available in large variety of formats, are specific to the target analyte, and reach low limits of detection.6, 7, 10, 11 Various enzyme linked immunosorbent assays (ELISA) are commercially available and enable to analyze multiple samples at once on a multi-well plate. The procedure consists in successive reaction steps that can take a few hours. The final product of reaction can be detected optically to determine the concentration of the target molecule based on a calibration curve.
Classical SPE procedures include sorbent pre-conditioning, sample extraction, washing, elution, and concentration by evaporation of the eluent. The solvent used for dilution of this extract is chosen depending on the detection method. For immunological methods, the amount of organic solvent influences strongly the sensitivity of the method.12
In addition to the recovery and the pre-concentration performances, the method also needs to be simple and cost efficient. Automation of the procedure helps to reduce human-related errors. In our previous work 13 we introduced our prototype for automated SPE, and our method was applied to the analysis of the natural hormone 17β-estradiol in sea water samples. With the present video we would like to highlight the technical advantages of our method compared to traditional off-line and on-line SPE, and its particular compatibility with detection by immuno-reactions. We describe the protocol applied to water samples for the detection of 17β-estradiol. SPE is performed with octadecyl-silica (C18) sorbent phase and elution is performed with diluted methanol.
Note: The following protocol describes the SPE performed on 100 ml water sample with C18 sorbent and elution with 50% v/v methanol. The enriched sample is diluted to reach 10% v/v methanol before analysis with an enzyme linked immunosorbent assay (ELISA) kit.
1. Preparing the Reagents
2. Preparation of the SPE Column
3. Preparing the System
4. SPE with the Prototype
5. Detection of Estradiol Concentration with ELISA
Reproducibility of sorbent packing was evaluated by drying and weighting the pipetted sorbent in glass vials and the result is shown in Figure 1. Reproducibility of the time of injection was tested for 100 ml samples, as shown in Figure 2. Concentration in initial and pre-concentrated spiked samples were determined by using a commercial ELISA kit for 17β-estradiol and are shown in Figure 3.
The proposed procedure involves the user for the preparation of the sorbent phase (Figure 1). The sorbent particles are held between two membranes for mechanical stability and are densely packed by the pressure applied with the syringe while pipetting the suspension in the column. The resulting column contains an optimized amount of 6 mg of the chosen sorbent with only 6% error on this value. This step also acts as sorbent conditioning, as the suspension is prepared in appropriated solvent conditions.
After preparing and installing the SPE column on the system, and loading the solutions in the appropriate reservoirs, the pre-concentration procedure is fully automated and requires in total less than 1 hr for a 100 ml sample (Figure 2). Extraction is performed in 40 ± 8 min. Only two parameters are still influenced by the user, the preparation of the packed sorbent and the setting of the flow-rate. The first would be solved by applying large scale methods for column fabrication. The second is related to the manual adjustment of the pressure regulator, which determines the pressure value used to drive the solutions through the system. This source of error would be eliminated by implementing an electronic pressure regulator.
Regarding performances, the pre-concentration factor achieved is 100. First, 500-fold pre-concentration is done by eluting the extract from the sorbent with 50% v/v methanol. Then a 5-times dilution is performed by adding di-water. This dilution reduces the solvent content and preserves the immunoassay sensitivity. When looking at the calibration curves of the ELISA (Figure 3A), it is clear that the methanol ratio in the enriched sample does not affect the sensitivity of the immunoassay. A representative result of pre-concentration is shown in Figure 3. The method was applied to di-water and artificial sea water samples spiked with 1 ng/L of 17β-estradiol. While the sample concentrations are below the limit of detection, the pre-concentration method successfully brings those samples in the range of the assay (30 – 30,000 ng/L). The recoveries were obtained by comparing the final concentration with theoretical spiked concentration. Recoveries of 128% ± 22% and 107% ± 6% were calculated for di-water and artificial sea water respectively (Figure 3B).
Figure 1. Illustration and reproducibility of the method for sorbent packing. There are three steps: securing the first Nylon membrane with the first connector, injecting the sorbent suspension, and closing the column by inserting the second membrane and connector. The resulting column contains 6 mg of sorbent with 6% standard deviation (n = 6 prepared and weighted columns). Please click here to view a larger version of this figure.
Figure 2. Step-by-step illustration of the procedure with reproducibility of time for sample injection. The solution inputs are loaded in the reservoirs or bottle. The two outputs are the processed sample (waste) and the enriched sample, which is compatible for analysis by immunoassay with low solvent content. The overall procedure is automated and takes slightly less than 1 hr (n = 31 with standard deviation). The influence of the user on the flow-rate is highlighted with blue characters. Please click here to view a larger version of this figure.
Figure 3. Results of the pre-concentration of E2 and analysis by ELISA. (A) Calibration curves of the ELISA and points measured for 1 ng/L spiked di-water (i) and artificial sea water (ii) after enrichment. (B) Recoveries obtained for 1 ng/L spiked di-water (i) and artificial sea water (ii) samples after enrichment (n=4). The error bars are standard deviations arising from the number of replicates and the 3 wells on the ELISA plate that were used to determine the concentration in each sample. This figure has been modified from (13). Please click here to view a larger version of this figure.
A new method for the preparation of water samples followed by analysis using immunoassay was proposed. The instrument enables to perform solid phase extraction in an automated and user-friendly way.
The filtration of the water sample prior to its injection into the system is critical. Any particulates still present in the solution would potentially cause clogging of the fluidic network and obstruct the SPE column. Another important step is the preparation of the SPE column. The amount of particles in the column is critical to achieve the best performances possible. Special care must be taken when preparing the suspension of sorbent particles, to avoid agglomeration of the particles. This is achieved by adding first the solvent fraction to the dry sorbent, and then the di-water fraction. Then, during the packing step, it is important to mix the suspension well while aspirating the 100 µl with the pipette. At the end of the SPE procedure, properly cleaning the system is critical. Firstly, it prevents cross-contamination when working with different samples, and secondly it avoids the risk of bio-contamination of the instrument when it is not used.
As discussed in the introduction, the use of immuno-detection methods for analysis of small pollutant molecules in the environment is expanding. Those methods reach limits of detections in the low ng/L levels 7, 11 and have the advantage of being very specific. Such methods are used in combination with chemical methods, mostly mass-spectrometry related techniques. 14, 15 The latter do not restrict the use of organic solvent and benefit from automated SPE systems that enable reaching the required high pre-concentration factors. In comparison, immunoassays are more sensitive to the assay buffer composition and lack adapted sample preparation techniques to facilitate the process. Our module is dedicated to the analysis of small molecules by immunoassay.
With our automated method, a 100-fold enrichment of the sample is achieved and permits to detect the analyte in the ELISA concentration range. If those pre-concentration performances seem low compared to traditional SPE, they perfectly match the requirements for immuno-detection. Moreover, the instrument has a small footprint (25 cm x 15 cm x 10 cm) and low-cost compared to typical manual or automated SPE setups.13 If needed, the throughput for multiple sample analysis can therefore be increased by using a few devices in parallel. Another possibility would be to design a method for smaller volumes of sample and eluent, which would reduce the time needed for the procedure. Some other limitations were discussed through the description of the results. There are still two steps where the user is involved, both linked to the degree of development of this prototype and would be solved by making one step further towards a commercial device. The packing of the sorbent phase is done manually. The method was however shown to be easy and reproducible. We are confident that disposable columns could be produced if the system were produced on a higher scale.
In summary, we have described a new method to perform SPE on a compact, automated device. We have demonstrated its potential for analysis of water samples by immunoassay through the description of an extraction and pre-concentration method applied to detection of 17β-estradiol by a commercial ELISA kit. The method is user friendly and cost effective, and could in the future be applied in-line with biosensors (work in progress). We expect our platform will enable to perform similar solid phase extraction procedures on more complex sample matrices of high relevance for the monitoring of EDCs, such as food or urine. We are convinced our system will support the application of established and upcoming immuno-detection methods in the field of environmental analysis.
The authors have nothing to disclose.
This work was funded by the European Union Seventh Framework Program FP7/2007-2013 under grant agreement no. 265721. The authors thank the RIKILT Institute for Food Safety (NL) for their support in this project.
Filter membrane 0.2 μm pore size | Merck Millipore | GNWP04700 | For sample filtration |
Nylon membrane 11 μm pore size | Merck Millipore | NY1104700 | For SPE column |
Disposable biopsy punch 5 mm | Medical Budget | 39302439 | |
Nucleodur C18 ec | Macherey Nagel | 713550.01 | 50 μm particle diameter |
Synthetic sea water | Sigma Aldrich | SSWS500-500ML | |
Methanol | VWR | ||
17beta-estradiol standard | Enzo Life Science | 300 ng/ml | |
17beta-estradiol ELISA kit | Enzo Life Science | ADI-900-008 | 96 wells, range 30 – 3000 ng/L |