Non-invasive electrical brain stimulation can modulate cortical function and behavior, both for research and clinical purposes. This protocol describes different brain stimulation approaches for modulation of the human motor system.
Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.
Non-invasive electrical brain stimulation (NEBS), the administration of electrical currents to the brain through the intact skull, can modify brain function and behavior1–3. To optimize the therapeutic potential of NEBS strategies understanding the underlying mechanisms leading to neurophysiological and behavioral effects is still needed. Standardization of application across different laboratories and full transparency of stimulation procedures provides the basis for comparability of data which supports reliable interpretation of results and evaluation of the proposed mechanisms of action. Transcranial direct current stimulation (tDCS) or transcranial alternating current stimulation (tACS) differ by parameters of the applied electrical current: tDCS consists of an unidirectional constant current flow between two electrodes (anode and cathode)2–6 while tACS uses an alternating current applied at a specific frequency7. Transcranial random noise stimulation (tRNS) is a special form of tACS that uses an alternating current applied at random frequencies (e.g., 100-640 Hz) resulting in quickly varying stimulation intensities and removing polarity-related effects4,6,7. Polarity is only of relevance if the stimulation setting includes a stimulation offset, e.g., noise spectrum randomly changing around a +1 mA baseline intensity (usually not used). For the purpose of this article, we will focus on work using tDCS and tRNS effects on the motor system, closely following a recent publication from our lab6.
The underlying mechanisms of action of tRNS are even less understood than of tDCS but likely different from the latter. Theoretically, in the conceptual framework of stochastic resonance tRNS introduces stimulation-induced noise to a neuronal system which may provide a signal processing benefit by altering the signal-to-noise ratio4,8,9. TRNS may predominantly amplify weaker signals and could thus optimize task-specific brain activity (endogenous noise9). Anodal tDCS increases cortical excitability indicated by alteration of the spontaneous neuronal firing rate10 or increased motor evoked potential (MEP) amplitudes2 with the effects outlasting the stimulation duration for minutes to hours. Long-lasting increases in synaptic efficacy known as long-term potentiation are thought to contribute to learning and memory. Indeed, anodal tDCS enhances synaptic efficacy of motor cortical synapses repeatedly activated by a weak synaptic input11. In accordance, improved motor function/skill acquisition is often revealed only if stimulation is co-applied with motor training11–13, also suggesting synaptic co-activation as a prerequisite of this activity-dependent process. Nevertheless, causality between increases in cortical excitability (increase in firing rate or MEP amplitude) on one hand and improved synaptic efficacy (LTP or behavioral function such as motor learning) on the other hand has not been demonstrated.
NEBS applied to the primary motor cortex (M1) has attracted increasing interest as safe and effective method to modulate human motor function1. Neurophysiological effects and behavioral outcome may depend on the stimulation strategy (e.g., tDCS polarity or tRNS), electrode size and montage4–6,14,15. Aside from subject-inherent anatomical and physiological factors the electrode montage significantly influences electric field distribution and may result in different patterns of current spreading within the cortex16–18. In addition to the intensity of the applied current the size of the electrodes determines the current density delivered3. Common electrode montages in human motor system studies include (Figure 1): 1) anodal tDCS as unilateral M1 stimulation with the anode positioned on the M1 of interest and the cathode positioned on the contralateral forehead; the basic idea of this approach is upregulation of excitability in the M1 of interest6,13,19–22; 2) anodal tDCS as bilateral M1 stimulation (also referred to as "bihemispheric" or "dual" stimulation) with the anode positioned on the M1 of interest and the cathode positioned on the contralateral M15,6,14,23,24; the basic idea of this approach is maximizing stimulation benefits by upregulation of excitability in the M1 of interest while downregulating excitability in the opposite M1 (i.e., modulation of interhemispheric inhibition between the two M1s); 3) For tRNS, only the above mentioned unilateral M1 stimulation montage has been investigated4,6; with this montage excitability enhancing effects of tRNS have been found for the frequency spectrum of 100-640 Hz4. The choice of brain stimulation strategy and electrode montage represents a critical step for an efficient and reliable use of NEBS in clinical or research settings. Here these three NEBS procedures are described in detail as used in human motor system studies and methodological and conceptual aspects are discussed. Materials for unilateral or bilateral tDCS and unilateral tRNS are the same (Figure 2).
Figure 1. Electrode montages and current direction for distinct NEBS strategies. (A) For unilateral anodal transcranial direct current stimulation (tDCS), the anode is centered over the primary motor cortex of interest and the cathode positioned over the contralateral supra-orbital area. (B) For bilateral motor cortex stimulation, anode and cathode are located each over one motor cortex. The position of the anode determines the motor cortex of interest for anodal tDCS. (C) For unilateral transcranial random noise stimulation (tRNS), one electrode is located over the motor cortex and the other electrode over the contralateral supra-orbital area. The current flow between electrodes is indicated by the black arrow. Anode (+, red), cathode (-, blue), Alternating current (+/-, green). Please click here to view a larger version of this figure.
Ethics statement: Human studies require written informed consent of participants before study entry. Obtain approval by the relevant ethics committee before recruitment of participants. Make sure studies are in accordance with the Declaration of Helsinki. The representative findings reported here (Figure 4) are based on a study performed in accordance with the Declaration of Helsinki amended by the 59th WMA General Assembly, Seoul, October 2008 and approved by the local Ethics Committee of the University of Freiburg. All subjects gave written informed consent before study entry6.
1. Safety Screening
2. Motor Cortex Localization
3. NEBS Electrode Preparation
4. NEBS Electrode Placement (Figure 1)
Figure 2. Materials used for NEBS protocols. Conventional materials used in non-invasive electrical brain stimulation protocols include an NEBS device, electrode cables, conductive rubber electrodes, perforated sponge bags, rubber sponge cover (optional), isotonic NaCl solution and bandages. Please click here to view a larger version of this figure.
5. Stimulation
To investigate the effects of NEBS on the human motor system it is important to consider appropriate outcome measures. One advantage of the motor system is the accessibility of the cortical representations by electrophysiological tools. Motor evoked potentials are frequently used as an indicator of motor cortical excitability. After application of 9 or more minutes of anodal tDCS at a current density of 29 µA/cm2, motor cortical excitability is increased for at least 30 min in the majority of healthy volunteers19,21,22 (see also Figure 3). Cathodal tDCS mostly causes the opposite (excitability-decreasing) or no effect19,22. However, as discussed recently22, there is some variability in the response direction, with some subjects showing the opposite direction of effect for anodal and cathodal tDCS. This should be taken into account for sample size calculations in studies using NEBS. Interestingly, comparable changes in M1 excitability were found after unilateral and bilateral tDCS5,23, and simple motor function was similarly improved directly after each stimulation type5. Therefore it is currently under investigation whether additional down-regulation of excitability of the contralateral M1 using the bilateral M1 montage exerts specific benefits to motor behavior (see below). In contrast, resting state fMRI indicated clearly different cortical network changes: bilateral tDCS modulates functional connectivity in the primary and secondary motor and in prefrontal areas, while unilateral tDCS modulates functional connectivity in prefrontal, parietal and cerebellar areas34.
tRNS has just recently developed as a tool to modulate cortical excitability4. Due to the alternating current tRNS is applied without polarity specificity (as long as there is no offset of stimulation intensity). However, efficiency of tRNS seems to depend on the applied noise spectrum, with high frequencies (100-640 Hz) showing more robust effects than low frequencies (<100 Hz)4. When directly compared to unilateral anodal tDCS, a similar but slightly longer lasting increase of M1 excitability (measured by MEP amplitude changes) was found after unilateral tRNS (Figure 3).
Figure 3. Time course of motor cortical excitability after different NEBS strategies. The MEP amplitude is shown as a function of time before and after 10 min of unilateral anodal transcranial direct stimulation (tDCS) or transcranial random noise stimulation (tRNS) applied to the primary motor cortex at a current density of 29 µA/cm2 (1 mA / 35 cm2). Error bars indicate standard error. Note that tRNS exerts similar effects on motor cortical excitability compared to anodal tDCS. MEP amplitude returns to baseline levels after approximately 50 min for anodal tDCS and after 90 min for tRNS. From Terney et al. (2008)4 with permission. Please click here to view a larger version of this figure.
Despite the heterogeneity of study designs, a common concept starts to evolve from NEBS trials testing the effects of tDCS and tRNS on motor function: NEBS influences motor performance or skills when simultaneously applied with training/testing. Anodal tDCS and tRNS applied as unilateral M1 stimulation or anodal tDCS applied as bilateral M1 stimulation during training were all shown to improve implicit motor sequence learning4,35–38 on the serial reaction time task39. Similarly, unilateral anodal tDCS applied during motor training was shown to increase rate of learning in an explicit motor learning paradigm40. However, effects of cathodal stimulation on implicit and explicit motor learning seem to be different: while cathodal tDCS during training did not significantly affect sequence learning during implicit motor learning35, it was reported to negatively affect explicit motor learning40. The reasons for this discrepancy need further investigation.
In previous investigations focusing on more complex motor skill learning over multiple days anodal tDCS applied as unilateral M1 stimulation during training significantly enhanced visuomotor skill learning13,20. Skill was determined by changes in movement accuracy as a function of movement speed (i.e., the speed-accuracy-tradeoff). Strikingly, in a direct comparison of electrode montages and stimulation types, both unilateral and bilateral M1 anodal tDCS and unilateral tRNS all enhanced skill learning on a visuomotor word and letter tracing task6 (Figure 4A). With regard to the mechanisms, it is currently unknown whether tDCS and tRNS operate by the same mechanisms of action. However, the time course of skill gains within session clearly differed between tDCS and tRNS: Unilateral tDCS exerted major effects on skill gains immediately after stimulation started. In contrast, bilateral tDCS and tRNS slowly enhanced skill gains during sessions (Figure 4B). This divergence points to temporally specific interactions between the NEBS type and the motor learning process. This should be considered when choosing stimulation types for future investigations of the motor system in healthy subjects as well as patients with neurological disorders.
Figure 4. Enhancement of motor skill by training and augmentation by different NEBS strategies. (A) Changes in motor skill during three days of motor training per stimulation group. Skill increases significantly over time in the sham stimulation control group and is augmented further by each NEBS strategy. (B) Scatter plot of subcomponents of motor learning. All stimulation groups present significantly greater overall motor learning compared to the sham stimulation control group. Only unilateral anodal transcranial direct current stimulation (tDCS) reveals greater immediate effects on motor learning – i.e., initial changes in skill after onset of stimulation, compared to sham control and transcranial random noise stimulation (tRNS). DC:M1-SO = unilateral tDCS. DC:M1-M1 = bilateral tDCS. RN:M1-SO = unilateral tRNS. *p<0.05, **p<0.01. Error bars = standard error of the mean. From Prichard et al. (2014)6 with permission. Please click here to view a larger version of this figure.
This protocol describes typical materials and procedural steps for modulation of hand motor function and skill learning using NEBS, specifically unilateral and bilateral M1 stimulation for anodal tDCS, and unilateral tRNS. Before choosing a particular NEBS protocol for a human motor system study, e.g., in the context of motor learning, methodological aspects (safety, tolerability, blinding) as well as conceptual aspects (montage or current type specific effects on a particular brain region) need to be taken into account. Advantages and limitations of the three strategies are presented in Table 1.
NEBS type | Advantage | Limitation |
Common to anodal tDCS and tRNS | Safe Cheap Easy to administer Outlasting effect on cortical excitability (up to 90 min) Improvement of motor function and motor skill learning in healthy subjects and patients with motor deficits Functional focality is reached by combination of NEBS with a particular task |
Structural stimulation focality is limited and defined by electrode size and montage Larger electrodes may stimulate cortical areas adjacent to the M1 of interest |
Unilateral M1 stimulation (tDCS) |
Polarity specificity (direction of excitability change in M1 of interest can be chosen) | Receiving electrode (cathode) is an active electrode and may exert a confounding effect on underlying brain area Difficult participant blinding at higher stimulation intensities (current density > 40 µA/cm2, e.g., > 1 mA / 25 cm2) |
Bilateral M1 stimulation (tDCS) |
Polarity specificity (direction of excitability change in M1 of interest can be chosen) Pronounced modulation of interhemispheric connection in addition to excitability increase of the M1 of interest (desired decreasing effect on the opposite M1) |
Difficult participant blinding at higher stimulation intensities (current density > 40 µA/cm2, e.g., >1 mA / 25 cm2) Higher risk of current shunting due to proximity of the electrodes |
Unilateral M1 stimulation (tRNS) |
Least side effects Improved participant blinding |
No polarity-specificity Effects on excitability and motor behavior are more robust at high frequency spectrum (100-640 Hz) |
NEBS, non-invasive electrical brain stimulation; M1, primary motor cortex; tDCS, transcranial direct current stimulation; tRNS, transcranial random noise stimulation
Table 1: Advantages and limitations of tDCS and tRNS.
From a methodological point of view subjects should always be screened thoroughly for contraindications for NEBS3,41 using questionnaires or standardized interviews (e.g., Keel et al., 200125). These do not differ between tDCS and tRNS. Absolute NEBS contraindications include: 1) skull deformation, e.g., due to fracture, as it may influence current flow and promote unexpected side effects; 2) Implanted medical device, e.g., cochlear implant and brain stimulator, as NEBS may negatively influence medical device functioning. For the use of TMS (e.g., for motor cortex localization (see protocol step 2)) ferromagnetic objects in the head/neck area, (e.g., shrapnel, surgical clips) also represent an absolute contraindication, as those objects may be dislocated by the magnetic field and pose a risk for the participant. Additional exclusion criteria are optional and depend on the study aims. Common additional contraindications include: 1) age above 85 years old; 2) pregnancy; 3) history of chronic skin disorders (mostly regarding the head); 4) adverse effects to previous brain stimulation protocols; 5) history of frequent or severe headache, e.g., migraine; 6) history of epileptic seizures; and 7) pacemaker. For participants with pacemaker a minimum safety distance of 10 cm should be kept between stimulation site and the pacemaker to prevent interference with its functioning.
Subjects should not be stimulated if any of the absolute contraindications apply. For safety reasons the NEBS device should have maximum output in mA range, should be battery-driven and should not be used while the charger is connected to electrical outlet. When applied per protocol, tDCS and tRNS are usually well tolerated32. Side effects of stimulation may include itching, tingling sensation, and headache outlasting the stimulation duration or triggering migraine attacks. However, from estimated 16.000 tDCS sessions (including multiple sequential sessions) no severe tDCS side effects were reported (Bikson M., personal communication, 2015; meta-analysis in preparation). Side effects can be minimized by careful stimulation electrode preparation and placement. This includes: 1. Skin inspection for lesions, 2. Applying the stimulation via a conductive medium like rubber electrodes covered with conductive paste or with saline soaked sponges, 3. Fading in and out the stimulation (a longer duration of ramping up and ramping down (e.g., 15 sec) is associated with less side effects), and 4. Impedance control. Participants usually habituate to skin sensations underneath the electrodes shortly after ramping up the stimulation. With tRNS in most cases skin sensations are less or not at all perceived compared to tDCS (consequently, similar rates of correct condition guess for sham and tRNS as compared to higher rates of correct condition guess with tDCS)6. This may be advantageous for studies where optimal blinding of participants is crucial. However, in the majority of studies participants were successfully blinded between real and sham tDCS, at least with low to medium stimulation intensities32,42. This is likely due to the implementation of a short ramping up and down for several seconds in the sham mode, which causes the tingling sensation42 but apparently does not alter cortical function2. Using an "active" sham mode that elicits the tingling sensation and automatically turns off stimulation after some seconds may be a superior method for blinding both participant and researcher as compared to simply placing the electrodes on the head of the participant and not starting the NEBS device.
For comparability of publications indicate the current density, electrode size (i.e., target area), electrode placement, conductive substrate between electrode and skin, duration for ramping up and down, stimulation duration and side effects. It should be noted that the declaration of stimulation intensity alone is not sufficient to estimate the current density delivered to the participant. For the calculation of current density divide the stimulation intensity (e.g., 1 mA, 1.5 mA, 2 mA) by the stimulated area. For instance, if stimulation intensity is 1mA and the electrode size is 16 cm2 the estimated current density is 0.0625 mA/cm2 (i.e., 1 mA/16 cm2 or 62.5 µA/cm2).
From a conceptual point of view, several cortical areas of the motor system are accessible by NEBS, either directly if the area is close to the cortical surface or via remote network effects43,44. The primary motor cortex can be located either by TMS-induced MEPs or using the EEG 10/20 international system26. Using the latter technique in a healthy participant is faster and easier as compared to using TMS-induced MEPs, but TMS provides superior accuracy to localize the individual cortical motor representation of interest. While the necessity for or the functional benefit from using a TMS hotspot as compared to the 10/20 system is yet unproven, TMS-induced MEPs demonstrate functional integrity of M1 and the pyramidal tract. For patients with brain lesion (e.g., stroke) TMS-induced MEPs is therefore preferentially used to locate the motor cortical representation as it may be largely shifted due to lesion size and location, and secondary motor areas may generate the motor output.
NEBS electrode size or montage may impact cortical areas adjacent to the region of interest, resulting in limited focality of the stimulation itself45,46. Smaller electrode sizes (emitting electrode in case of tDCS) may limit the widespread and exert more focal effects onto M1, as suggested by modeling studies or software tools; similarly, less distance between electrodes may condense the electrical field46,47. However, the functional focality obtained by task specific activation of particular synapses11 or networks that are augmented by combining task/training with stimulation could be more crucial46: on one hand, functional imaging studies revealed different network changes after unilateral versus bilateral M1 tDCS, or tDCS versus tRNS, respectively14,15. On the other hand, the net effect of anodal tDCS and tRNS on motor behavior, e.g., learning, seems to be similar: Based on the few investigations with direct comparisons of stimulation type/montage, one could argue for positive effects on motor function as long as M1 contralateral to the tested hand is targeted by NEBS (in case of tDCS with anodal stimulation4–6).
Most robust behavioral effects are usually found when stimulation and task execution or training are carried out simultaneously13. Inconsistent results have been reported for NEBS and tasks applied consecutively1. Other electrode montages such as recently developed high-definition tDCS may increase stimulation focality48,49 but require future investigation regarding the behavioral consequences. Controlled studies evaluating tRNS effects on stroke motor rehabilitation and learning, as well as comparative studies of distinct NEBS strategies in patient populations are largely missing. Future studies with NEBS of the human motor system are necessary for a better understanding of promises and pitfalls of NEBS in clinical applications.
The authors have nothing to disclose.
MC and JR are supported by the German Research Foundation (DFG RE 2740/3-1).
NEBS device (DC Stimulator plus) | Neuroconn | ||
Electrode cables | Neuroconn | ||
Conductive-rubber electrodes | Neuroconn | 5×5 cm | |
Perforated sponge bags | Neuroconn | 5×5 cm | |
Non-conductive rubber sponge cover | Amrex-Zetron | FG-02-A103 | Rubber pad 3"*3" |
NaCl isotonic solution | B. Braun Melsungen AG | A1151 | Ecoflac, 0,9% |
Cotton crepe bandage | Paul Hartmann AG | 931004 | 8x5m, textile elasticity |
Adhesive tape (Leukofix) | BSN medical | 02122-00 | 2,5cm*5m |
Skin preparation paste | Weaver | 10-30 | |
Magnetic stimulator | Magstim | 3010-00 | Magstim 200 |
EMG conductive paste | GE Medical Systems | 217083 | |
EMG bipolar electrodes | e.g., Natus Medical Inc. Viking 4 | ||
EMG amplifier | e.g., Natus Medical Inc. Viking 4 | ||
Cable for EMG signal transmission | e.g., Natus Medical Inc. Viking 4 | ||
Data acquisition unit | Cambridge Electronic Design (CED) | MK1401-3 | AD converter |
Computer for signal recording and offline analysis | |||
Signal 4.0.9 | Cambridge Electronic Design (CED) | Software | |
non-permanent skin marker | Edding | 8020 | 1 mm, blue |