Experimental animal research plays a pivotal role in the development of clinical transplantation practice. The porcine orthotopic liver transplantation model (OLTx) closely resembles human conditions and is frequently used in clinically oriented research. The following protocol contains all information for a reliable porcine OLTx model using an active porto-caval-jugular shunt.
The success of liver transplantation has resulted in a dramatic organ shortage. Each year, a considerable number of patients on the liver transplantation waiting list die without receiving an organ transplant or are delisted due to disease progression. Even after a successful transplantation, rejection and side effects of immunosuppression remain major concerns for graft survival and patient morbidity.
Experimental animal research has been essential to the success of liver transplantation and still plays a pivotal role in the development of clinical transplantation practice. In particular, the porcine orthotopic liver transplantation model (OLTx) is optimal for clinically oriented research for its close resemblance to human size, anatomy, and physiology.
Decompression of intestinal congestion during the anhepatic phase of porcine OLTx is important to guarantee reliable animal survival. The use of an active porto-caval-jugular shunt achieves excellent intestinal decompression. The system can be used for short-term as well as long-term survival experiments. The following protocol contains all technical information for a stable and reproducible liver transplantation model in pigs including post-operative animal care.
Orthotopic liver transplantation (OLTx) is the only treatment option for patients with end-stage liver disease or advanced hepatocellular carcinoma. For the last 25 years, the number of candidates on the waiting list has gradually increased and now far exceeds the number of available grafts. In most transplant regions, 20 to 30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted due to progression of disease. Strategies to increase the donor pool and, thus, the number of available grafts, are desperately required. Extended criteria organ allocation, prolonged graft preservation, and induction of immunological tolerance still represent major clinical challenges1-3. Hence, experimental OLTx research is pivotal in order to optimize clinical OLTx practice.
Porcine OLTx is a well-established experimental model that resembles human OLTx in many ways including liver size, anatomy, and physiology4-6. Thus, it has become a standard experimental method in research fields such as surgical techniques, physiology, immunology, preservation, and ischemia-reperfusion injury. Numerous techniques of graft procurement, recipient hepatectomy, and, particularly, vascular reconstruction, have been described in literature5. The choice of the appropriate technique varies according to the researcher’s preference and technical capability.
In contrast to the human scenario, splanchnic congestion during the anhepatic phase represents an important problem in porcine OLTx. Subsequent intestinal ischemia and congestive vascular damage can cause severe hemodynamic instability, jeopardizing the pig survival and, thus, the success of the experiment7-9. Therefore, sufficient intestinal decompression is mandatory, especially in less technically refined experimental settings.
Using an active porto-caval-jugular shunt for the duration of the anhepatic phase is a reliable option to avoid intestinal congestion. The system can be used for early reperfusion experiments as well as long-term survival scenarios. The following protocol contains all information for a stable and reproducible liver transplantation model in pigs, including donor liver procurement, recipient operation including hepatectomy and end-to-end vessel reconstruction techniques, and post-operative care.
All animals received humane care in compliance with the ‘‘Principles of Laboratory Animal Care’’ formulated by the National Society for Medical Research and the ‘‘Guide for the Care of Laboratory Animals’’ published by the National Institutes of Health, Ontario, Canada. The Animal Care Committee of the Toronto General Research Institute approved all studies.
1. Organ Retrieval
2. Recipient Hepatectomy
3. Vessel Reconstruction
4. Post-operative Phase
In a first transplantation study, a heart-beating donor model (HBD, n = 5) was compared with a DCD model (n = 10) exposed to 45 min of warm ischemia in situ. In both groups, grafts were preserved on ice for 10 hrs after procurement.
In the HBD group, 100% of the recipient pigs survived until the end of follow-up on day 5 after transplantation. In the DCD group, only 50% of the recipient pigs survived for 5 days due to coagulation issues or metabolic decompensation, as a result of decreased post-operative liver function.
All blood samples were collected from the central venous catheter. After centrifugation, serum samples were obtained and analyzed for hepatocellular injury (aspartate aminotransferase, AST), biliary function (total bilirubin and alkaline phosphatase), and liver function (INR). The time-course of each marker is shown in Figures 2 – 5.
AST levels reached a peak after 24 hrs (1414 ± 538 U/L in the HBD group and 2296 ± 1313 U/L in the DCD group, p = 0.13) and returned to almost normal values after 5 days. Similarly, alkaline phosphatase values were markedly increased after 36 hrs in the DCD group (224 ± 111 U/L) when compared to the HBD group (162 ± 54 U/L, p = 0.27). While total bilirubin was stable in the HBD group (≤ 10 µmol/L throughout), it gradually increased in the DCD group until day 5 (23 ± 31 µmol/L, p = 0.43). The large standard deviation in the bilirubin values in the DCD group shows a peculiar heterogeneity biliary injury in this group. INR as a marker of liver function showed a trend similar to the AST values. Values peaked at 24 hrs and were restored to almost normal values after 5 days. The HBD group had lower values with a peak at 1.47 ± 0.34 in comparison to the DCD group (peak 1.70 ± 0.36, p = 0.32).
Figure 1. Scheme of the porto-caval-jugular shunt. The bypass is filled with Lactated Ringer’s solution. Then the caval part is clamped with a tubing clamp, the jugular and splenic parts are connected to the pre-set catheters, the bypass is opened, and the centrifugal pump is started after portal venous clamping. After liver resection, the caval part of the bypass is inserted and secured in the infrahepatic vena cava stump, cranial to the renal veins. The tubing clamp is released to allow caval decompression, in addition to the portal decompression.
Figure 2. Aspartate aminotransferase (AST) (HBD n = 5, DCD n = 10). AST is a sensitive marker of hepatocellular injury. The peak after 24 hrs is lower in the HBD than in the DCD group, suggesting less hepatic reperfusion injury; the smaller standard deviation shows more homogeneous results in the HBD group.
Figure 3. Total bilirubin (HBD n = 5, DCD n = 10). Total bilirubin, as a marker of biliary clearance and bile duct integrity, shows a stable and homogeneous trend with values below 10 µmol/L in the HBD group. The bilirubin curve in the DCD group increases gradually over time and shows a high standard deviation, suggesting biliary injury in only a portion of the experimental group.
Figure 4. Alkaline phosphatase (HBD n = 5, DCD n = 10). Alkaline phosphatase is an indicator of biliary injury. The values for the HBD group are lower than that of the DCD group, which implies less biliary injury.
Figure 5. INR (HBD n = 5, DCD n = 10). A high INR value indicates diminished hepatocellular function due to decreased release of coagulation factors. In both HBD and DCD groups, the INR values return to normal values 5 days after transplantation, suggesting recovery of liver function. The values for the HBD group appear lower.
Experimental porcine OLTx is a challenging procedure for a research setting without the intensive care resources of a clinical scenario. Possible complications include hemodynamic instability, hemorrhage, organ ischemia, hypothermia, and metabolic, as well as respiratory, decompensation. For any research group, sufficient procedural training of the surgical technique5 as well as the pig anesthesia14,15 is mandatory in order to achieve representative and reproducible results.
Many technical subtleties have been described in the literature, especially regarding the vascular reconstruction phase5. The OLTx protocol described above provides the required information for a cava-replacing model resembling human OLTx. The provided results demonstrate reliable animal survival and graft recovery in both HBD and DCD models. The protocol is applicable in short-term survival scenarios used in graft reperfusion experiments, for example, as well as in long-term survival models such as tolerance studies.
One great obstacle of porcine OLTx is the relatively poor tolerance of cava and portal vein cross-clamping. Splanchnic congestion during the anhepatic phase causes venous hypertension and capillary damage that can lead to major intestinal ischemia and hemodynamic instability to the point of an irreversible shock even after organ reperfusion7. Since the vena cava is completely embedded in liver parenchyma, a cava-preserving piggy-back procedure is not feasible. The total occlusion of the vena cava during the cava reconstruction phase impairs the hemodynamic stability of the pig. Although a few reports show that porcine OLTx can be accomplished during total cava and portal vein occlusion of less than 25 min16,17, a porto-cava-jugular bypass technique for the time of vascular reconstruction is the safer and more practical option7-9,18. In the authors’ experience, a passive porto-jugular bypass is not optimal to keep the pig hemodynamically stable during the anhepatic phase. The bypass model, including active decompression of both infrahepatic cava and portal vein, allows a calm reconstruction phase of the suprahepatic caval and portal anastomoses even with extended clamping time due to unforeseen complications. Contrary to earlier reports7, a splenectomy is not mandatory when the portal bypass catheter is removed. Both splenic artery and vein are closed about halfway along the spleen’s length leaving the proximal half sufficiently perfused. Complications like bleeding or air embolism due to bypass disconnection are avoidable by ensuring that the bypass is placed carefully and secured properly.
In long-term survival OLTx experiments, the bile duct anastomosis is considered a weak spot due to its high complication rate19. The biliary tissue is very fragile and needs special care when being handled. Many different anastomosis techniques have been described5,19. An end-to-end anastomosis is technically easy and associated with minimal complications19. A continuous suture with a non-cutting needle including big sections of peribiliary connective tissue appears to be superior to an interrupted suture. The bile duct is placed under unnecessary tension when the single stitches of the interrupted suture are knotted. This may result in tissue tears and consecutive bile leaks. The suture material – absorbable or non-absorbable – is usually not important, given its limited lifespan until the pig is terminated. For long-term survival models over several months, absorbable sutures – like in human OLTx – are preferable.
Specific care must be taken with the post-operative follow-up. Sufficient nutrition and fluid supply, a reliable pain relief protocol, and a proper immunosuppression regime are obligatory. For long-term experiments, immunosuppression appears particularly important. Compared to other mammals, pigs show a surprisingly low immunological rejection rate after OLTx20,21. Round cell infiltrations are maximal during the second week after transplantation and diminish spontaneously even without immunosuppression. Rejection is rarely the cause of death after porcine OLTx22. However, even with the immunosuppression protocol involving administering steroids i.v. and calcineurin inhibitors p.o. mentioned here, graft rejection is indicated by a mild increase of transaminases starting at about 4 days after OLTx and confirmed by apparent portal field round cell infiltration. Calcineurin inhibitors can be given either p.o.23,24 or i.v.25,26; both methods have disadvantages. Even with oral application aids, the actual amount reaching the gastro-intestinal tract remains elusive. On the other hand, continuous i.v. infusion in a pig’s pen with an active animal is difficult. Hence, the i.v. application must be performed as a bolus, which results in high drug concentration peaks along with potential toxic effects. Nonetheless, both methods of application appear to allow long-term survival.
Similar to a clinical setting, post-operative stress ulcer prophylaxis is recommended. Post-operative bleeding from peptic ulcers is a frequent problem and may be related to an impaired liver function27. After a few cases of gastrointestinal bleeding in both OLTx groups, the authors began regular prophylaxis with pantoprazole and did not experience any gastrointestinal bleeding ever since.
Strict maintenance of sterile conditions intraoperatively, comparable to the conditions in a clinical operating room, and consequent antibiotic prophylaxis, decreases the risk of infectious complications.
In conclusion, this article provides practical information for establishing a porcine OLTx program in a research setting. Sufficient dedication, practice, and teamwork is important in order to decrease the learning period, to produce reliable results, and to reduce costs and the number of research animals.
The authors have nothing to disclose.
The study was supported by research grants from the Roche Organ Transplant Research Foundation (ROTRF) and Astellas. Markus Selzner was supported by an ASTS Career Development Award. Matthias Knaak was supported by the Astellas Research Scholarship. We thank Uwe Mummenhoff and the Birmingham family for their generous support.
Atropine Sulphate 15mg/30mL | Rafter 8 Products | 238481 | |
Buprenorphine 0.3mg/mL | RB Pharmaceuticals LDT | N/A | |
Cefazolin 1g | Pharmaceutical Partners of Canada Inc. | 2237138 | |
Cyclosporin Oral Solution 5000mg/50mL | Novartis Pharmaceuticals Canada Inc. | 2150697 | |
Fentanyl Citrate 0.25mg/5mL | Sandoz Canada Inc. | 2240434 | |
Heparin 10,000iU/10mL | Leo Pharma A/S | 453811 | |
Isoflurane 99.9%, 250mL | Pharmaceutical Partners of Canada Inc. | 2231929 | |
Ketamine Hydrochloride 5000mg/50mL | Bimeda-MTC Animal Health Inc. | 612316 | |
Lactated Ringer’s + 5% Dextrose, 0.5L | Baxter Corporation | 61131 | |
Lacteted Ringer’s, 1L | Baxter Corporation | 61085 | |
Metronidazole 500mg/100mL | Baxter Corporation | 870420 | |
Midazolame 50mg/10mL | Pharmaceutical Partners of Canada Inc. | 2242905 | |
Pantoprazole 40mg | Sandoz Canada Inc. | 2306727 | |
Potassium Chloride 40mEq/20mL | Hospira Healthcare Corporation | 37869 | |
Propofol 1000mg/100mL | Pharmascience Inc. | 2244379 | |
Protamine Sulfate 50mg/5mL | Pharmaceutical Partners of Canada Inc. | 2139537 | |
Saline 0.9%, 1L | Baxter Corporation | 60208 | |
Sodium Bicarbonate 50 mEq/50mL | Hospira Healthcare Corporation | 261998 | |
Solu-Medrol 500mg | Pfizer Canada Inc. | 2367963 | |
Tranexamic Acid 1000mg/10mL | Pfizer Canada Inc. | 2064413 | |
University of Wisconsin Solution, SPS-1 | Organ Recovery Systms | SPS-1 | |
Xylocaine Endotracheal 10mg/50mL | AstraZeneca | 2003767 | |
Appose ULC 35W skin stapler | Covidien Canada | 803712 | |
Maxon, 1 | Covidien Canada | 606173 | |
Sofsilk, 0 | Covidien Canada | S606 | |
Sofsilk, 2-0 | Covidien Canada | S405 | |
Sofsilk, 3-0 | Covidien Canada | S404 | |
Surgipro II, 4-0 | Covidien Canada | VP581X | |
Surgipro II, 5-0 | Covidien Canada | VP725X | |
Surgipro II, 6-0 | Covidien Canada | VP733X | |
Catheter i.v, 18 G | BD Canada | 381147 | |
Cook TPN catheter, 9.5Fr | Cook Medical Company | C-TPNS-9.5-90 | |
PSI Kit for sheath catheter, 8.5Fr | Arrow International | ASK-09803-UHN | |
Infusion Pump Line | Smith Medical ASD Inc. | 21-0442-25 | |
Liver Admin Set (flush line) | CardioMed Supplies Inc | 17175 | |
Mallinckrodt, Tracheal Tube, 6.5mm | Covidien Canada | 86449 | |
Med-Rx Suction Connecting Tube | Benlan Inc. | 70-8120 | |
Organ Bag | CardioMed Supplies Inc | 2990 | |
Suction Tip | Tyco Healthcare Group LP | 8888501023 | |
Valleylab, Cautery Pencil | Covidien Canada | E2515H | |
Valleylab, Patient Return Electrode | Covidien Canada | E7507 | |
Bypass Connector 3/8” x 1/4“ | Raumedic AG | 955083-001 | |
Bypass Connector 3/8” x 3/8” Luer Lock | Raumedic AG | 955163-001 | |
Bypass Connector Y 3/8” x 3/8” x 1/4” | Raumedic AG | 961360-002 | |
Bypass Tubing 1/4” x 1/16” | Raumedic AG | 039505-010 | |
Bypass Tubing 3/8” x 3/32” | Raumedic AG | 039535-005 | |
Rotaflow Cenrtifugal Pump | Maquet-Dynamed | HC 2821 | |
Stainless Steel Hose Clamp Ring, 5mm | Oetiker | 16700007 | |
Abdominal Retractor | Medite GmbH | N/A | |
De Bakey – Beck, Infrahepatic Cava Clamp | Aesculap Inc. | FB519R | |
Diethrich, Atraumaitc Clamp (Portal Vein) | Aesculap Inc. | FB525R | |
Gregory Bull Dog Clamp, curved | Aesculap Inc. | FB382R | |
Gregory Bull Dog Clamp, straight | Aesculap Inc. | FB381R | |
Potts – De Martel, Scissors | Aesculap Inc. | BC648R | |
Satinsky, Suprahepatic Cava Clamp | Aesculap Inc. | FB605R | |
Symetrical Tubing Clamp | Codman Instruments | 198010 | |
Anesthesia Machine, Optimax | Moduflex Anesthesia Equipment | SN5180 | |
Bypass Flow meter, HT 110 | Transonic Systems Inc. | HT110B11106 | |
Flow meter probe, H6XL | Transonic Systems Inc. | H6Xl689 | |
Heat Therapy Pump, T/Pump | Gaymar Industries Inc | TP500-G89D19 | |
Infusion Pump 3000 | SIMS Graseby LTD. | SN300050447 | |
Isoflurane Vapor 19.1 | Draeger Medical Canada Inc. | N/A | |
Monitor, Datex AS 3 | Instrumentarium Corp./ Hitachi | D-VHC14-23-02 | |
Rotaflow Centrifugal Drive Unit | Marquet-Dynamed | 952301 | |
Rotaflow Console | Marquet-Dynamed | 706035 | |
Temperature Therapy Pad | Gaymar Industries Inc | TP26E | |
Valleylab Force Tx | Valleylab Inc. | 216151480 | |
Ventilator, AV 800 | DRE Medical Equipment | 40800AVV | |
Warm Touch, Patient Warming System | Nellcor/ Covidien Canada | 5015300A |