Time-lapse imaging in the living animal provides valuable information on structural reorganization in the intact brain. Here, we introduce a thinned-skull preparation that allows transcranial imaging of fluorescently labeled synaptic structures in the living mouse cortex by two-photon microscopy.
In the mammalian cortex, neurons form extremely complicated networks and exchange information at synapses. Changes in synaptic strength, as well as addition/removal of synapses, occur in an experience-dependent manner, providing the structural foundation of neuronal plasticity. As postsynaptic components of the most excitatory synapses in the cortex, dendritic spines are considered to be a good proxy of synapses. Taking advantages of mouse genetics and fluorescent labeling techniques, individual neurons and their synaptic structures can be labeled in the intact brain. Here we introduce a transcranial imaging protocol using two-photon laser scanning microscopy to follow fluorescently labeled postsynaptic dendritic spines over time in vivo. This protocol utilizes a thinned-skull preparation, which keeps the skull intact and avoids inflammatory effects caused by exposure of the meninges and the cortex. Therefore, images can be acquired immediately after surgery is performed. The experimental procedure can be performed repetitively over various time intervals ranging from hours to years. The application of this preparation can also be expanded to investigate different cortical regions and layers, as well as other cell types, under physiological and pathological conditions.
The mammalian cortex participates in many brain functions, from sensory perception and movement control to abstract information processing and cognition. Various cortical functions build upon different neural circuits, which are made up of different types of neurons communicating and exchanging information at individual synapses. The structure and function of synapses are consistently being modified in response to experiences and pathologies. In the mature brain, synaptic plasticity takes the form of both strength changes and addition/removal of synapses, playing important roles in formation and maintenance of a functional neural circuitry. Dendritic spines are the postsynaptic components of the majority of excitatory synapses in the mammalian brain. The constant turnover and morphological changes of spines are believed to serve as a good indicator of modifications in synaptic connections1-7.
Two-photon laser scanning microscopy offers deep penetration through thick, opaque preparations and low phototoxicity, which makes it suitable for live imaging in the intact brain8. In combination with fluorescent labeling, two-photon imaging provides a powerful tool to peek into the living brain and follow structural reorganization at individual synapses with high spatial and temporal resolution. Various methods have been used to prepare mice for live imaging9-13. Here, we describe a thinned-skull preparation of in vivo two-photon imaging to investigate the structural plasticity of postsynaptic dendritic spines in the mouse cortex. Using this approach, our recent studies have depicted a dynamic picture of dendritic spine changes in response to motor skill learning With increasing availability of transgenic animals with fluorescently labeled neuronal subsets and rapid development of in vivo labeling techniques, similar procedures described here can also be applied to investigate other cell types and cortical regions, combined with other manipulations, as well as used in disease models16-23.
Approval needs to be obtained from home institutions before commencement of the surgery and imaging study. Experiments described in this manuscript were performed in accordance with the guidelines and regulations from the University of California, Santa Cruz Institutional Animal Care and Use Committee.
1. Surgery
2. Thinned-skull Preparation
3. Immobilization
4. Imaging
5. Recovery
6. Reimaging
In YFP-H line mice25, yellow fluorescent protein expresses in a subset of layer V pyramidal neurons, which project their apical dendrites to the superficial layers in the cortex. Through the thinned-skull preparation, the fluorescently labeled dendritic segments can be repetitively imaged under two-photon microscope over various imaging intervals, ranging from hours to months. Here we show an example of a four-time imaging of the same dendrites over 8 days in the motor cortex of a 1 month old mouse, where individual spines as well as filopodia can be clearly visualized along the dendrite. Usually, the depth of image stacks is approximately 100-200 μm from the pial surface. Various analyses can be performed based on these images. For instance, the spine formation, elimination and turnover can be quantified by comparing images from different sessions. Spine density can be calculated by dividing the number of spines by the length of the dendritic segment. Changes of spine motility and morphology can also be analyzed.
Figure 1. Custom-made immobilization plates of thinned-skull preparation for two-photon in vivo imaging. (A) A photograph of the head plate, which is made of two or three razor blades glued together, with sharp edges covered by tapes. (B) A photograph of the holding plate, which consists of 1 stainless steel plate, 2 stainless steel blocks, 2 screws, and 2 spacers.
Figure 2. Transcranial two-photon imaging through a thinned-skull preparation in the mouse motor cortex, showing dynamics of dendritic spines over eight days. (A) A CCD image of the vasculature pattern with the thinned skull area (Map 1). The black box indicates the region where two-photon in vivo images were acquired. (B) A low-magnification maximum projection of dendritic branches in the motor cortex of a 1 month old mouse (Map 2). (C) Repetitive images of the same dendritic segment reveal newly formed spines (arrowheads), eliminated spines (arrows), and filopodia (stars) on day 0, 2, 4, and 8. The left panel is a higher-magnification view of the dendritic segment shown in the boxed region in (B). Scale bars: 500 μm (A), 20 μm (B), and 2 μm (C).
To obtain a successful thinned-skull preparation, several steps in this protocol are crucial. 1) The thickness of the skull. The cranial bone has a sandwich structure, with two layers of high-density compact bone and a middle layer of low-density spongy bone. While the high-speed micro drill is suitable for removing the outer layers of compact bone and spongy bone, the microsurgical blade is ideal for thinning the inner layer of compact bone. As the thickness and stiffness of the skull increases during development, imaging of adult mice requires more bone to be removed in order to obtain images of good quality. The thinned area exhibits a transparent solid appearance and provides good imaging quality when the thickness of the skull is approximately 20-30 μm. The skull thickness should be checked periodically during the thinning process as over-thinning makes the thinning process in subsequent reimaging sessions difficult. 2) The size of the thinned region. It is important to establish a stable thinned-skull configuration, where a cone-like cavity is achieved. The architecture of the thinned region with a proper size prevents causing damage to the cortex and helps thinning in subsequent re-imaging sessions. It is recommended to make the bottom area (approximately 200-300 μm in diameter) of the thinned region smaller than the top opening (approximately 0.5-1.0 mm in diameter). 3) The stability of the images. A well-immobilized preparation helps to improve the image quality by reducing respiratory-induced movement artifacts. It is important to keep the skull dry and devoid of connective tissue and bone debris before the head plate is attached on to the skull. Extra glue can also be applied to fill the remaining gaps between the head plate and the skull. In addition, targeting an area away from big vasculature also minimizes the movements caused by blood pumping.
Investigation of the changes in the brain of living animals with high spatial and temporal resolution using two-photon microscopy requires generation of an optical window. In addition to thinned-skull preparation, fluorescently labeled structures can also be visualized by removing the skull and replacing it with a cover glass (usually 3-5 mm in diameter) that provides a clear imaging window10,13. While both thinned-skull and open-skull imaging protocols are applied broadly for in vivo imaging studies, each method has its own advantages and is suitable for different experimental designs. For instance, the open-skull preparation is useful for studies that investigate relatively large brain areas (e.g., 5 mm diameter) and require many imaging sessions with short intervals (i.e., days). Once the cranial window is successfully implanted, no additional surgery is required. However, a post-surgery period (usually approximately 1 month) is required before the first imaging session to ameliorate potential inflammatory responses caused by surgery. Re-imaging becomes impossible when the cranial window is blocked by regrowth of the bone and/or thickening of the meninges. In contrast, animals with a thinned-skull preparation can be imaged immediately after the initial surgery, making it more suitable for chronic imaging of younger animals (e.g., 2 weeks old). It is suitable for investigation with long imaging intervals (i.e. months to years), as the bone regrowth and dura thickening is not problematic. However, re-thinning of the skull is usually required for subsequent re-imaging sessions (even with 2 day intervals) due to the bone regrowth. Moreover, the newly grown bone layer consists of a less condensed structure compared to the original compact bone, greatly reducing the transparency of the thinned-skull region. Therefore, to acquire the same quality of images, it is necessary to completely remove the newly grown bone layer. And such attempts usually lead to the final thickness of the skull in the subsequent imaging thinner than the previous preparation. Since the skull thickness had been prepared to 20-30 μm in the initial imaging session, leaving limited room for re-thinning, the total imaging times of thinned-skull preparation is usually less than 5 times. Recently, a new experimental approach named polished and reinforced thinned-skull (PoRTS) has been developed to combine both thinned- and open-skull preparations11,26,27.
So far, the majority of in vivo imaging in the cortex has been performed using transgenic mouse lines expressing EGFP or YFP under neuronal specific thy1 promoter. These transgenic mice express fluorescent proteins sparsely in a subset, but mixed population of cortical neurons25. Since many lines of evidence suggest that experience-dependent structural plasticity happens in selective cell types of well-defined circuits, it is important to label and image in a cell-type specific manner. To date, many approaches have been applied to achieve this goal. For example, pyramidal neurons in different cortical layers can be targeted by performing in utero electroporation at defined embryonic stages28,29. Similarly, injection of viral vectors engineered to express a fluorescent protein can also be used to label cells in different brain regions30. In addition, many lines of transgenic mice have been generated to drive the expression of Cre recombinase under cell type specific promoters31,32. Injection of viral vectors such as adeno-associated virus carrying fluorescent reporter gene following a floxed stop codon into these mice offers the possibility to target a specified class of neurons in a restricted region33. By combining these new labeling approaches with our thinned-skull preparation, changes in synaptic connections of cortical neurons can be investigated by two-photon in vivo imaging in a cell type- and/or circuit-specific manner.
With the increasing availability of transgenic animals with fluorescently labeled cell populations and rapid development of in vivo labeling techniques, similar procedures described here can also be applied to investigate other cell types (glial cells) and vasculature in the living brain. Combined with behavioral manipulations and disease models, two-photon in vivo imaging will greatly expand our understandings of the molecular, cellular, and circuit mechanisms underlying brain functions.
The authors have nothing to disclose.
We thank James Perna for the graphic illustration. This work was supported by grants from the National Institute of Mental Health to Y.Z.
Ketamine | Bioniche Pharma | 67457-034-10 | Mixed with xylazine for anesthesia |
Xylazine | Lloyd laboratories | 139-236 | Mixed with ketamine for anesthesia |
Saline | Hospira | 0409-7983-09 | 0.9% NaCl for injection and imaging |
Razor blades | Electron microscopy sciences | 72000 | Double-edge stainless steel razor blades |
Alcohol pads | Fisher Scientific | 06-669-62 | Sterile alcohol prep pads |
Eye ointment | Henry Schein | 102-9470 | Petrolatum ophthalmic ointment sterile ocular lubricant |
High-speed micro drill | Fine Science Tools | 18000-17 | The high-speed micro drill is suitable for thinning the outer layer of compact bone and targeting a small area |
Micro drill steel burrs | Fine Science Tools | 19007-14 | 1.4 mm diameter |
Microsurgical blade | Surgistar | 6961 | The microsurgical blade is suitable for thinning the inner layer of compact bone and middler layer of spongy bone |
Cyanoacrylate glue | Fisher Scientific | NC9062131 | Fix the head plate onto the skull |
Suture | Havard Apparatus | 510461 | Non-absorbale, sterile silk suture, 6-0 monofilament |
Dissecting microscope | Olympus | SZ61 | |
CCD camera | Infinity | ||
Two-photon microscope | Prairie Technologies | Ultima IV | |
10X objective | Olympus | NA 0.30, air | |
60X objective | Olympus | NA 1.1, IR permeable, water immersion | |
Ti-sapphire laser | Spectra-Physics | Mai Tai HP |