A fully automated protocol for rodent operant conditioning is proposed. The protocol relies on precise temporal control of behavioral events to investigate the extent to which this control influences neural activity underlying sensorimotor integration and cognitive control experiments.
Rodents have been traditionally used as a standard animal model in laboratory experiments involving a myriad of sensory, cognitive, and motor tasks. Higher cognitive functions that require precise control over sensorimotor responses such as decision-making and attentional modulation, however, are typically assessed in nonhuman primates. Despite the richness of primate behavior that allows multiple variants of these functions to be studied, the rodent model remains an attractive, cost-effective alternative to primate models. Furthermore, the ability to fully automate operant conditioning in rodents adds unique advantages over the labor intensive training of nonhuman primates while studying a broad range of these complex functions.
Here, we introduce a protocol for operantly conditioning rats on performing working memory tasks. During critical epochs of the task, the protocol ensures that the animal’s overt movement is minimized by requiring the animal to ‘fixate’ until a Go cue is delivered, akin to nonhuman primate experimental design. A simple two alternative forced choice task is implemented to demonstrate the performance. We discuss the application of this paradigm to other tasks.
Studying the relation between neurophysiology and behavior is the ultimate goal in systems neuroscience. Historically, there has been a tradeoff between animal model choice and behavioral repertoire1-5. While simple organisms like sea slugs6 or squids7 have been used extensively to study properties of single ion channels, neurons and simple neural circuits, higher order species are needed to study more complex functions such as spatial navigation, decision making8-11 and cognitive control12-14. Despite being a standard animal model for human like behavior, use of nonhuman primates prompts cost and ethical considerations that precludes their use across a wide range of experiments in a single laboratory setting15-18. Simpler animal models such as rodents are generally preferred19, provided they have similar neural substrates underlying the behaviors of interest.
There’s ample evidence suggesting that rodents share similar cortical and subcortical structures as those found in primates20-22. Rodents are also known to integrate information across multiple sensory modalities to guide their action23-25, for example, by coordinating whisking and sniffing during exploratory behavior26 or by integrating auditory and visual/olfactory events25,27.
Here we describe a framework for operant conditioning of rodents used to test cognitive tasks28-32. In this framework, subjects are required to fixate inside a nosepoke hole and maintain their snout inside the hole until the presentation of a go cue. The behavioral task is a five-hole nosepoke design that is conventionally used for 5-choice serial reaction time task studies. During the delay period, a range of instruction cues is presented to guide the subject to perform an action. This framework can easily be modified to suit a wide range of experiments in which training the subject to minimize its overt movement over a brief interval is needed. This permits studying the extent to which spiking activity of individual neurons is affected by specific cues during this interval. The protocol can minimize the training time and can reduce across-subject learning variability. A schematic flowchart of the task is shown in Figure 1.
All procedures involving animals were approved by the Michigan State University Institutional Animal Care and Use Committee (IACUC).
1. Experimental Setup
2. Early Habituation
3. Subject Training
4. Behavioral Data Analysis
The suggested framework enables training the subject on a range of cognitive tasks. Here we implemented an instructed delay task designed to investigate the mechanisms of goal-directed actions in the rodent prefrontal cortex. Figure 1 shows a flowchart of the experimental design.
To ensure that the subject understands the task requirement at every step, performance measures should be continuously assessed. Figure 2 shows an example performance of one subject across multiple sessions. Once the subject acquired the task, it was implanted with a 32 channel microelectrode array in the prelimbic area (corresponding to the medial prefrontal cortex). Multiunit activity and local field potentials (LFPs) were recorded. Single neuron spike trains were isolated using standard spike sorting techniques33 and events associated with different epochs of the task were marked. Figures 3 and 4 show some sample results of selective multiple single unit modulations during critical epochs of the task.
Figure 1. Flowchart of a sample trial showing the sequence of actions and events during a trial. The subject self-initiates a trial by poking the nose inside the fixation hole. Briefly after the nosepoke, an instruction cue (a single frequency tone) is played followed by a delay period. The subject is required to maintain the nose inside the fixation hole until the presentation of the Go cue. Any premature retraction will cause the trial to be aborted and the subject is penalized by a time-out. After a delay period of random length, a Go Cue (auditory white noise) is presented and the subject is free to move towards the instructed target. Successful trials are rewarded by a 45 mg food pellet while failed trials are timed out for 15 sec. Click here to view larger image.
Figure 2. Behavioral performance scores measured across multiple sessions. (a) Success rate is defined as the ratio of the number of successful trials to total number trials in every session. Results are shown for a fully trained subject across 14 recording sessions. (b) Distribution of error types. Premature retraction occurs with early retraction before the Go cue. Commission error is defined as visiting any target other than the one that was instructed and the omission error occurs when the subject does not reach for any target within 5 sec from the Go Cue. (c) A histogram of reaction time – the period between the onset of the Go cue and the subject's breaking out the fixation hole beam – showing the distribution of the reaction time across different trials. (d) A histogram of time to target – the period between breaking out of the fixation hole and breaking in the target hole – showing the distribution of the time to target across different trials. Click here to view larger image.
Figure 3. Neurophysiology data from a sample trial. After the subject mastered the task and maintained a high performance level for at least a week, it was implanted with a 32 channel microelectrode array in the prelimbic area of medial Prefrontal cortex (mPFC) and multiple single unit activity was recorded along with local field potentials. A sample trace of LFP variation along with a raster plot of 22 simultaneously recorded units (each row is a unit and each dot represents one spike) are shown. Markers for behavioral events are also plotted on top of the traces. These traces show high prediction power of motor intention after the Go cue (Analysis not shown here). Click here to view larger image.
Sensory Cue | Spatial Target Location |
1 KHz | Right |
2 KHz | Right |
4 KHz | Left |
8 KHz | Left |
Table 1. Instruction cue assignment. The table shows the corresponding motor target assigned to each instruction cue.
Sensory Cue | Spatial Target Location |
1 KHz | Right |
2 KHz | Right |
4 KHz | Left |
8 KHz | Left |
Table 2. Training time table. The table shows the length of training session spent for each subject (2 training session/day) for adult female Sprague-Dawley rats (3-4 months old).
Protocol | A24 | A25 | A26 | A28 | A29 | Average |
Start | 4 | 2 | 4 | 4 | 4 | 3.6 |
TargetSelection | 3 | 5 | 5 | 4 | 4 | 4.2 |
Nosepoke | 8 | 7 | 9 | 5 | 2 | 6.2 |
Delay | 8 | 8 | 5 | 4 | 3 | 5.6 |
Two Cues (with Light) | 5 | 4 | 5 | 5 | 2 | 4.2 |
Two Cues (without Light) | 10 | 7 | 9 | 11 | 17 | 10.8 |
Four Cues | 13 | 12 | 14 | 18 | 11 | 13.6 |
Total | 51 | 45 | 51 | 51 | 43 | 48.2 |
Rats have been widely used in neuroscience research for over a century. Since Thorndike's introduction of the concept of the law of effect in cats34, operant conditioning has been the standard approach to test different aspects of animal behavior. Many neuroscience experiments involving decision making and motor preparation include a delay period between the instruction cues and the action interval. It is desirable to minimize movements during these delay periods to reduce any confounds to the neural data being acquired. While conventional maze navigation experiments in rodents capitalize on rodents' great capacity to forage for food, they are limited by the movements that the animal execute and therefore cannot be used to test more complex questions such as decision making and motor planning. While maze tasks are easy to implement as subjects learn to navigate rapidly, overt behavior is unrestricted during every phase of the task (e.g. the central arm of a T-maze).
Here we described a flexible framework inspired by visual attention studies in rodents. The representative results we provided demonstrate that animals can learn the task, even when multiple sensory cues are associated with a single motor target. This design was selected to test the capacity of the working memory used to guide motor behavior. The most critical step within the protocol is to train the subject to maintain their nose inside the fixation hole for the entire duration of the delay period.
Because frontal areas are reciprocally connected to many cortical and subcortical areas, precise timing of the behavioral events and synchronizing the timing of those events to the acquired neural data can alleviate the risk of potential confounds. Computer-automated registration of behavioral events (such as nosepoke or cue trigger) can occur with millisecond precision. Video tracking of subject movement can also be performed and the data can be synchronized with behavioral events to provide precise correlation between neural activity and behavior.
More complex cognitive abilities of rodents can be studied using this paradigm. For example, we have used it to implement a rodent version of the delayed match-to-sample task with an auditory sensory modality rather than spatial navigation. The subject was cued with a sample auditory cue followed by a matching cue and had to decide on target locations based on the matching decision.
Troubleshooting:
The implementation of the experimental design is very straightforward using a computer software and subjects should be able to master the task over approximately 25-30 training sessions. Deviations from this schedule might be due to lack of motivation, or confusion that may be caused by:
To summarize, technological advances in recording and stimulation of large ensembles have enabled measuring and interrogating the neural circuitry underlying action preparation and execution with millisecond precision. Rodents are among the best candidates across different animal species to be used for such research given their ability to perform cognitive tasks and the availability of techniques tailored to rodents. The protocol described in this article may help to design experiments to answer specific questions about the cognitive aspects of action preparation and execution.
The authors have nothing to disclose.
This work was supported by the NINDS grant #NS054148.
5-HOLED NOSE POKE WITH 3STIM CUE LIGHT – RAT CAGE | Coulbourn | H21-06M/R | |
TEST CAGE | Coulbourn | H10-11R-TC | |
Graphic State Software | Coulbourn | ||
PROGRAMMABLE TONE/NOISE GENERATOR | Coulbourn | A12-33 | |
Dustless Precision Pellets | Bio-Serv | F0165 | |
SPEAKER MODULE | Coulbourn | H12-01R |