Human respiratory syncytial virus (HRSV) can cause severe bronchiolitis in young infants. Part of the pathogenesis of severe HRSV disease is caused by the host immune response. Stimulation of primary human immune cells with HRSV provides a fast and reproducible model system to study activation of inflammatory pathways and infection.
Human respiratory syncytial virus (HRSV) infections present a broad spectrum of disease severity, ranging from mild infections to life-threatening bronchiolitis. An important part of the pathogenesis of severe disease is an enhanced immune response leading to immunopathology.
Here, we describe a protocol used to investigate the immune response of human immune cells to an HRSV infection. First, we describe methods used for culturing, purification and quantification of HRSV. Subsequently, we describe a human in vitro model in which peripheral blood mononuclear cells (PBMCs) are stimulated with live HRSV. This model system can be used to study multiple parameters that may contribute to disease severity, including the innate and adaptive immune response. These responses can be measured at the transcriptional and translational level. Moreover, viral infection of cells can easily be measured using flow cytometry. Taken together, stimulation of PBMC with live HRSV provides a fast and reproducible model system to examine mechanisms involved in HRSV-induced disease.
Human Respiratory Syncytial Virus (HRSV) is the most common cause of lower respiratory tract infections in children. Each year, over 33 million children under the age of five are infected with HRSV, leading to over three million hospitalizations and almost 200,000 deaths1. A growing body of evidence suggests that HRSV also poses a significant threat to the elderly and adults with underlying chronic illnesses2.
The majority of HRSV infections in young children presents with mild symptoms, comparable to the common cold, and do not require clinical intervention. However, a small proportion of patients require hospitalization and mechanical ventilation due to severe bronchiolitis.
Part of the pathogenesis of HRSV disease is the host's overexuberant and inadequate immune response to infection3,4. This is illustrated by several observations. The period of maximal illness is often preceded by the peak of viral infection and coincides better with cellular infiltration of infected tissues and the release of inflammatory cytokines3. Another line of evidence comes from the formalin inactivated HRSV (FI-RSV) trials in the 1960s. Instead of inducing protection in young infants, the vaccine resulted in an exaggerated immune response resulting in enhanced respiratory disease and higher morbidity and mortality.
Several models have been developed to study the pathogenesis of HRSV infections. Continuous cell lines, like HEp-2 and A549, have been used extensively to study HRSV infection in vitro. Epithelial cells are the primary targets of HRSV infection5, therefore a lot of focus has been on these cell types. However, the in vivo situation is much more complex and not limited to one cell type. In order to examine these complex interactions, several animal infection models have been developed to study HRSV pathogenesis. Thus far, two different strategies have been employed, focusing either on heterologous (nonhuman) models as well as cognate host-pneumovirus models. Examples of heterologous models for HRSV include chimpanzees, sheep, cotton rats and mice. RSV infection in its natural host has been studied in cattle and in mice, using bovine RSV and pneumovirus, respectively.
Whilst each of these models has provided important insights into disease pathogenesis, HRSV is highly adapted to humans. Therefore, as an addition to the cell lines and animal models currently used, we propose to use human primary PBMCs as a model for stimulation with HRSV. Human PBMCs can be obtained from a range of individuals to address specific research questions, including young children6, immunocompromised individuals as well as healthy adults7 or elderly individuals8. PBMCs can be used to study innate aspects of infection as well as the adaptive response to the virus. Activated inflammatory pathways important for the pathogenesis of HRSV disease can be studied at the mRNA and protein level. Further, viral infection of (subsets of) immune cells can be determined by flow cytometry. We have used this model previously to identify the synergistic effects of HRSV infection together with the bacterial ligand muramyl dipeptide (MDP) on the induction of proinflammatory cytokines7. We propose to use HRSV stimulation of human primary PBMCs as a robust, easy and fast in vitro model to study inflammatory pathways involved in the pathogenesis of HRSV disease.
Note:
Experiments with HRSV must be performed in a biological safety cabinet in a biosafety level 2 laboratory. Collect all viral waste and material that has been in contact with the virus for proper disposal due to biological hazards.
Special precaution must be taken when using potentially infected human blood.
It is crucial to use endotoxin-free reagents throughout all protocols.
1. Culturing of HRSV A2
2. Purification of HRSV
Note: Before using an ultracentrifuge, be aware that it is a potentially dangerous piece of equipment. Read the manuals and perform the first ultracentrifugation spin under supervision of someone with experience.
3. Quantification of HRSV
Note: To ensure reproducible data, repeat the quantification at least 3x in duplicate.
3.1. Infection of A549 cells
3.2. Preparation for FACS
3.3. FITC-50 calculation
4. Peripheral Blood Mononuclear Cell (PBMC) Isolation from Healthy Volunteer Blood
5. Stimulation of PBMCs with Live HRSV
6. Readout of Stimulation
The HRSV A2 cultivation and purification method described here will give a yield between 2 x 107 and 2 x 108 FITC-50 quantified infectious viral particles/ml. Results of microscopic analysis, where FITC-stained infected cells were counted (results not shown), were compared to results of quantification by FACS (Figure 1). Both methods resulted in similar titers, although the FACS method had a much lower standard deviation between different experiments and was less laborious.
When performing a PBMC stimulation experiment we recommend using the stimuli-fraction method. With this method the conditions are divided in stimuli conditions and fraction conditions (Figure 2). The stimuli conditions are the standard conditions (e.g. RPMI and HRSV). The fraction conditions are the test conditions (e.g. RPMI, MDP, and LPS). Always include a negative control and a positive control in each experiment. In this experiment LPS is the positive control and RPMI is the negative control. LPS can often be used as a positive control when proinflammatory cytokines will be measured such as TNFα and IL-1β. The stimuli-fraction method prevents the omission of important control conditions.
After 24 hr of stimulation different cell types present in the PBMC showed a dose-dependent infection rate (Figure 3). Different cell types show a difference in efficiency of HRSV infection. HRSV was able to infect monocytes and NK cells at a lower MOI value compared to CD4+ T cells and CD8+ T cells.
After 24 hr of stimulation the PBMCs are lysed and analyzed by qPCR for the expression of TNF-α and IFN-γ (Figure 4). TNF-α is a cytokine that is mainly produced by monocytes and is therefore often regarded as a typical innate cytokine. IFN-γ can be produced by various cell types, including NK cells and T cells, and therefore represents both the innate as well as the adaptive response. As shown in Figure 4, HRSV strongly upregulated TNF-α and IFN-γ transcription. Conversely, stimulation with MDP and LPS only results in a weak expression increase. However, when PBMCs are stimulated with both HRSV and MDP together, a strong synergistic upregulation is observed.
Stimulated PBMCs were also analyzed for the secretion of TNF-α and IFN-γ by ELISA (Figure 5). For both cytokines, the negative control remains negative. Whilst LPS is a good positive control for TNF-α, it does not induce IFN-γ. A better control for IFN-γ production may be to stimulate PBMCs with Candida albicans, which is known to induce IFN-γ. In contrast to observations at the transcriptional level, HRSV is a poor inducer of IFN-γ and TNF-α protein secretion by PBMC. Stimulation with MDP results in the detection of low amounts of TNF-α and no IFN-γ. Similar to the transcriptional analysis, both TNF-α and IFN-γ show a synergistic upregulation when costimulated with HRSV and MDP.
As a control to see whether cytokine induction is dependent on replication of HRSV, we stimulated PBMCs with live and BPL inactivated HRSV9. As can be seen in Figure 6, inactivated HRSV is also recognized by immune cells and induces inflammatory cytokines.
Figure 1. Quantification of HRSV A2 by flow cytometry. (A) Representative FACS plot of HRSV infected A549 cells that are stained with anti-HRSV nucleoprotein antibody conjugated to FITC. A negative (field Q4) and positive (field Q3) population is clearly distinguishable. (B) Dose response curve of the % of HRSV-infected A549 cells is set out against the dilution. The number of FITC-detected infectious particles/ml is determined at the dilution at which there is 50% infection. Data are presented as mean +/- SEM of the pooled duplicates of 3 experiments, and fitted with a one-phase exponential decay curve.
Figure 2. Schematic diagram of a stimulation experiment of human PBMCs in a 96-well plate. Always include duplicates for each condition and include positive and negative controls.
Figure 3. Different PBMC cell types are infected with different susceptibility and in a dose-dependent manner. PBMCs isolated from four healthy volunteers were stimulated with fluorescent HRSV A2 (MOI = 0.2, 1, and 5). After 24 hr of incubation at 37 °C PBMCs were stained with antibodies against CD14 (monocytes), CD56 (NK cells), CD3 and CD4 (CD4+ T cells) or CD3 and CD8 (CD8+ T cells). Data are presented as mean percentage of infection + SEM and represent two individually performed experiments.
Figure 4. Costimulation with HRSV and MDP results in synergistic upregulation of TNF-α and IFN-γ expression. PBMCs isolated from five healthy volunteers were stimulated with HRSV A2 (MOI = 1), MDP (5 μg/ml) or LPS (1 ng/ml), or a combination of stimuli. TNF-α and IFN-γ transcription was measured by quantitative PCR and expressed as fold-increase compared to unstimulated cells. Cells were lysed after 24 hr of incubation at 37 °C. Data are presented as mean + SEM of the pooled duplicates of all five samples and represent a minimum of two performed experiments.
Figure 5. Costimulation with HRSV and MDP result in a synergistic increase of TNF-α and IFN-γ secretion. PBMCs isolated from five healthy volunteers were stimulated with HRSV A2 (MOI = 1), MDP (5 μg/ml) or LPS (1 ng/ml), or a combination of stimuli. The levels of TNF-α and IFN-γ in culture supernatants were measured by ELISA after 24 hr of stimulation at 37 °C. Data are presented as mean + SEM of the pooled duplicates of all five samples and are representative of minimal two experiments performed.
Figure 6. Both live HRSV as BPL inactivated HRSV induce proinflammatory cytokine responses. PBMCs from four healthy volunteers were stimulated with HRSV A2 (MOI = 1) or the same dose of BPL inactivated HRSV (RSV-BPL). The levels of TNF-α and IFN-γ in culture supernatants were measured by ELISA after 24 hr of stimulation at 37 °C. Data are presented as mean + SEM of the pooled duplicates of all four samples and are representative of minimal two experiments performed.
In this study, we demonstrate that infection of PBMC with HRSV is a fast and reliable model system in which inflammatory pathways can be studied. In order to stimulate PBMCs an HRSV stock has to be prepared and quantified.
Multiple cell lines are susceptible to HRSV infection. Cell lines most used for HRSV culturing are HEp-2, HeLa, and Vero cells. However, we would not recommend the usage of Vero cells for culturing of HRSV because it has been shown that culturing of HRSV in Vero cells results in a truncated G-protein of HRSV10. Also, always use low amounts of virus to infect the cells for culturing because of the risk of generating defective interfering particles11. Defective interfering particles (DIPs) are viral particles that miss part or all of their genome. DIPs can therefore not sustain an infection by themselves but rely on infectious virus. Due to their small genomes they are more efficiently replicated than a fully functional virus, which can result in large numbers of noninfectious particles. These DIPs cannot be measured by quantification techniques relying on replication. However, they probably will be recognized in a stimulation experiment of immune cells. Therefore, it is crucial to keep them as low as possible. Treuhaft et al. have shown that when HRSV is cultured using an MOI of 0.1, they were not able to detect DIPs after 8 passages11.
For reproducibility between different batches of virus, an accurate determination of the number of infectious particles/ml is important. Standard methods for HRSV quantification are plaque formation and TCID50 determination on HEp-2 or HeLa cells. As HRSV is a poorly-cytopathic virus, cytopathogenic effect (CPE) detection can be hard and is therefore subjective. Usage of fluorescent antibodies can solve the problem with subjectivity. However, both methods require lengthy incubation. Our described method of quantification of HRSV using flow cytometry has proven to be fast and reproducible. Similar protocols have been described for other viruses12.
In this study, we demonstrated how PBMCs can be stimulated with live HRSV. We showed that different cell types in PBMCs are infected by HRSV. They showed a dose-response to HRSV infection and different cell types showed a different susceptibility. We also demonstrated that whilst stimulation with HRSV alone induces an appreciable upregulation of inflammatory genes at the mRNA level, only low amounts of IFN-γ and TNF-α were secreted. However, costimulation with a bacterial ligand, i.e. MDP, induces a synergistic increase in proinflammatory cytokine production. In a previous study we showed that this model system can very easily be adapted to study inflammatory pathways induced by other viruses, e.g. influenza or rhinovirus7.
To account for interindividual variation with human primary cells, stimulation experiments of PBMCs should be performed with at least five donors and in two separate experiments. For instance, the responses of human PBMCs to e.g. LPS are known to be divided into high responders and low responders13. These highly variable responses can be caused by differences in cell counts between individuals, but also by differences in the intrinsic capacity of these cells to respond to stimuli. Especially in the context of HRSV infections, which show such a broad spectrum of severities, this interindividual variation could also lead to interesting observations regarding individual differences in susceptibility or immune response. Due to the fact that donors can be divided in high and low responders, nonparametric statistical methods should be used in analyzing cytokine data.
Whilst many studies have used continuous cell lines, e.g. A549 cells, to study the response to HRSV infection, cell lines are very different from primary cells and may therefore not always reflect the biological situation in vivo. Although epithelial cells are generally regarded as the primary cells infected by HRSV5, the immune cells present below and between the epithelial cells play a very important role in disease pathogenesis14,15. Thus, excluding these cells from the experimental setup disregards an important part of the host response. Epithelial cells with a higher relevance are the normal human bronchial epithelial cells (NHBEs)16, which are primary bronchial cells that can be differentiated into ciliated mucus producing cells. These NHBEs can be polarized in a transwell system on an air-liquid interface and therefore resemble the airway epithelium much better. An example of how the complex interplay between epithelial cells and immune cells can be mimicked in vitro is by adding PBMCs to the basolateral side of polarized NHBE cells, which creates a situation that may be more comparable to the in vivo situation.
Inflammatory pathways can also be tested using whole blood. Whole blood stimulations are even faster and require fewer resources compared to PBMC stimulations. However, it is important to note that PBMCs do not contain plasma proteins. Blood plasma contains many proteins, including complement proteins, cytokines and antibodies. Because every individual above the age of two will have encountered an infection with HRSV, blood plasma will contain HRSV-specific neutralizing antibodies. Infection of cells in the presence of human serum or plasma is therefore not possible.
The biggest advantage of animal models is that it creates the opportunity to examine HRSV infection in vivo. Whilst this complex interplay of cells cannot be mimicked using PBMCs, it should be noted that no animal model to date has reproduced the total range of pathologies seen in HRSV infected humans. Consequently, human PBMCs remain relevant to study HRSV infections. A major benefit of using PBMCs is the availability of multiple patient groups that can be compared. For instance, PBMCs from the elderly can be used as well as from immunocompromised adult patients. As HRSV is especially prone to infect very young infants, PBMCs from these age groups and/or patient groups are especially relevant to use. Stimulation experiments as described above are already feasible with an amount of 3 ml of blood. In addition, previous studies have shown that these experiments can also be performed on PBMCs from cord blood17.
In conclusion, the procedures described in this paper offer a reproducible and easy to use method to examine mechanisms involved in HRSV-induced disease.
The authors have nothing to disclose.
RSV A2 was kindly provided by Dr. R. de Swart (Erasmus MC, Rotterdam, The Netherlands). MV and GF are supported by the Virgo consortium, funded by the Dutch government project number FES0908, and by the Netherlands Genomics Initiative (NGI) project number 050-060-452. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Reagent | |||
PBS | Lonza | BE17-516F | PBS without Ca2+ Mg2+ or phenol red |
HBSS | Invitrogen | 14025-100 | HBSS, Calcium, Magnesium, no Phenol Red |
DMEM | Invitrogen | 31966-047 | DMEM, High Glucose, GlutaMAX, Pyruvate |
RPMI | Invitrogen | 72400054 | RPMI 1640 Medium, GlutaMAX, HEPES |
Reduced Serum Medium (Opti-MEM) | Invitrogen | 51985-026 | Opti-MEM I Reduced Serum Medium, GlutaMAX |
FCS | Greiner Bio-one | FBS (Fetal Bovine Serum) | |
BSA | Sigma Aldrich | A7030 | Albumin from bovine serum |
P/S | Invitrogen | 15140-122 | Penicillin-Streptomycin, liquid |
Trypsin | Invitrogen | 25300-054 | 0.05% Trypsin-EDTA (1x), Phenol Red |
HeLa cells | ATCC | CCL-2 | |
A549 cells | ATCC | CCL-185 | |
Sucrose | Sigma Aldrich | S7903 | Sucrose BioXtra, ≥99.5% |
IgG2 anti-mouse-FITC | BD Pharmingen | 555057 | Ms IgG2b K FITC isotype control |
Anti-NP-RSV-FITC | Abcam | ab25849 | Anti-Respiratory Syncytial Virus antibody [671] (FITC) |
Density gradient medium (Lymphoprep) | Axis-Shield | 1114545 | |
EDTA tubes | BD Biosciences | 367525 | |
Acetone | Merck Millipore | 1000141000 | Acetone for analysis |
[header] | |||
Material | |||
Centrifuge Tubes | Beckman Coulter | 326823 | Thinwall, Polyallomer, 38.5 ml, 25 mm x 89 mm |
SureSpin 630 Rotor with 36 ml buckets | Sorvall | 79368 | Swinging bucket titanium rotor |
Sorvall WX80 Ultracentrifuge | Sorvall | 46900 | |
CB 150l CO2 Incubator | Binder |