In this article we introduce fast micro-iontophoresis of neurotransmitters as a technique to investigate integration of postsynaptic signals with high spatial and temporal precision.
One of the fundamental interests in neuroscience is to understand the integration of excitatory and inhibitory inputs along the very complex structure of the dendritic tree, which eventually leads to neuronal output of action potentials at the axon. The influence of diverse spatial and temporal parameters of specific synaptic input on neuronal output is currently under investigation, e.g. the distance-dependent attenuation of dendritic inputs, the location-dependent interaction of spatially segregated inputs, the influence of GABAergig inhibition on excitatory integration, linear and non-linear integration modes, and many more.
With fast micro-iontophoresis of glutamate and GABA it is possible to precisely investigate the spatial and temporal integration of glutamatergic excitation and GABAergic inhibition. Critical technical requirements are either a triggered fluorescent lamp, light-emitting diode (LED), or a two-photon scanning microscope to visualize dendritic branches without introducing significant photo-damage of the tissue. Furthermore, it is very important to have a micro-iontophoresis amplifier that allows for fast capacitance compensation of high resistance pipettes. Another crucial point is that no transmitter is involuntarily released by the pipette during the experiment.
Once established, this technique will give reliable and reproducible signals with a high neurotransmitter and location specificity. Compared to glutamate and GABA uncaging, fast iontophoresis allows using both transmitters at the same time but at very distant locations without limitation to the field of view. There are also advantages compared to focal electrical stimulation of axons: with micro-iontophoresis the location of the input site is definitely known and it is sure that only the neurotransmitter of interest is released. However it has to be considered that with micro-iontophoresis only the postsynapse is activated and presynaptic aspects of neurotransmitter release are not resolved. In this article we demonstrate how to set up micro-iontophoresis in brain slice experiments.
Neurons in the central nervous system receive a variety of synaptic inputs on their thin and ramified dendritic processes1. There, the majority of the excitatory dendritic inputs are mediated by glutamatergic synapses. These synapses can be activated in a spatially distributed way, resulting in postsynaptic linear integration of excitatory postsynaptic potentials (EPSPs). If the synapses are activated simultaneously and in spatial proximity on the dendrite, these excitatory inputs can be integrated supra-linearly and generate dendritic spikes2-5.
Furthermore, the integration of excitatory inputs depends on the location of the input on the dendritic tree. Signals that arrive at the distal tuft region are much more attenuated than proximal inputs due to cable filtering6. In the hippocampus, distant inputs to the apical tuft dendrites are generated by a different brain region than those on proximal dendrites7. An exciting question is therefore, how synaptic input is processed by different dendritic compartments and if dendritic integration regulates the influence of these layered inputs on neuronal firing in different ways.
Not only the functional properties, morphological features of the dendrite, the location and clustering of the inputs are affecting the dendritic integration of excitatory inputs, also the additional inhibitory inputs from GABAergic terminals crucially determine the efficacy of the glutamatergic synapses8,9. These different aspects of synaptic integration can be ideally investigated using neurotransmitter micro-iontophoresis, which allows spatially defined application of different neurotransmitters to dendritic domains. We demonstrate here how to successfully establish micro-iontophoresis of glutamate and GABA to investigate signal integration in neurons.
For this application, fine-tipped high resistance pipettes filled with concentrated neurotransmitter solutions are used. These pipettes are positioned close to the outer membrane of the cell, where the neurotransmitter receptors are located. A good visualization of the dendritic branches is required. This is best achieved using fluorescent dyes, which are introduced via the patch pipette. Then a very short (<1 msec) current pulse (in the range of 10 – 100 nA) is used to eject the charged neurotransmitter molecules. With these short pulses and effective capacitance compensation, postsynaptic potentials or currents can be evoked with high temporal and spatial precision, which means the location of the excitatory input is precisely known. Glutamate micro-iontophoresis can activate synapses in a defined radius, which is smaller than 6 μm as shown here (Figure 19), but it is also possible to reach single synapse resolution10-12.
Heine, M., et al showed that the spatial resolution of fast micro-iontophoresis can even be adjusted to spot sizes below 0.5 μm, which is smaller than spot sizes regularly achieved with two-photon uncaging of glutamate13. With fast micro-iontophoresis it is easily possible to use two or more iontophoretic pipettes and place them at different, even distant spots on the dendritic tree. In this way, integration of excitatory events, including those from different pathways, can be investigated. It is also possible to use a glutamate and a GABA filled iontophoretic pipette at the same time. In this way the effect of GABAergic inhibition at different locations relative to the excitatory input (on-path, off-path inhibition) can be studied. Also, the impact of inhibition by interneurons targeting specific neuronal domains, like distal dendrites, soma or axons14, can be investigated using GABA iontophoresis. In cultured neurons, fast micro-iontophoresis offers the opportunity to investigate single synapse distribution and the elementary aspects of synaptic communication in neurons in much more detail10,11.
In this article we demonstrate in detail how to establish glutamate and GABA iontophoresis for the use in acute brain slices, which allows investigating synaptic integration of excitatory and inhibitory inputs in dependence of input location, input strengths, and timing, alone or in interplay. We will point out the advantages and limitations of this technique and how to troubleshoot successfully.
1. System Requirements
2. Prepare Solutions
3. Pull and Test the Iontophoresis Pipettes
4. Prepare the Brain Slices
5. Establish a Whole-cell Recording
6. Place the Iontophoretic Pipette and Generate a Postsynaptic Iontophoretic Potential
A simple approach to determine the spatial spread of iontophoresis is to retract the iontophoretic pipette stepwise from the dendrite, while keeping the ejected glutamate constant. We found that the spatial extent of a micro-iontophoretic stimulation had a diameter of approximately 12 μm (Figure 1 showing radius). How deep in the tissue the iontophoresis can be used depends on the rigidity of the pipette. However, the iontophoretic pipettes needed for experiments in slices (Figure 2), which are used here, are not limiting the depth of penetration. Rather the optical system and the decreasing resolution in the depth of the brain slice is the limiting factor. For a good quality recording it is crucial that no transmitter is leaking out of the pipette. In the case of glutamate, a leakage can be identified if there is a sudden depolarisation when the dendrite is approached with the pipette tip or if the baseline suddenly becomes unstable (Figure 5). After establishing a stable recording, it is possible to evoke EPSPs of defined amplitudes, dendritic spikes or action potentials with this technique on any location throughout the dendritic tree (Figure 6). By applying glutamate with fast micro-iontophoresis, the properties of EPSPs, their propagation and summation, simultaneously at different even distant locations, can be investigated (Figure 7). GABAergic events can be evoked alone or in addition to glutamate with a second pipette by filling the iontophoretic pipette with a highly concentrated GABA solution (see: Protocol section 2) and a positive eject current. There is a simple protocol to confirm the GABAergic nature of the events and to make GABAergic events easier to detect, if not using a high driving force internal solution: Inject negative currents (approx. 1 sec; the amplitude depends on the input resistance of the cell) resulting in hyperpolarising voltage steps, starting at around -100 mV and then increase in 5 mV steps (Figure 8). At very negative potentials the GABAergic events are easier to detect, due to the higher driving force. And if the signals reverse around the calculated Cl– reversal potential for the solutions, it is very likely that they are GABAergic in nature (Figure 8). With an additional GABA micro-iontophoretic pipette, it is possible to investigate, for example, the effect of GABAergic inhibition on glutamatergic events, like dendritic sodium/calcium spikes, by varying the relative timing of dendritic spike and IPSP (Figure 9), the relative location of both events, or their amplitudes. (All animal experiments were conducted in accordance with the guidelines of the Animal Care and Use Committee of the University of Bonn, the German Center for Neurodegenerative Diseases and the state Northrhine-Westfalia.)
Figure 1. Spatial extent of iontophoretically ejected glutamate determined by pipette retraction. A) Maximum intensity projection of a two-photon image of a CA1 pyramidal cell dendrite filled with 100 μM Alexa 594 and the iontophoretic pipette in the initial position (scale bar 8 μm). Insets show retraction of the iontophoretic pipette and the corresponding iontophoretic EPSP recorded at the soma. Arrow indicates the position of the iontophoretic pipette tip. B) Distance dependence of EPSP amplitudes relative to the initial position of the iontophoretic pipette tip (≤1 μm away from dendrite, n = 6 branches). With this we could estimate the radius of the glutamate spread by systematically retracting the pipette. Inset shows representative example traces. Error bars represent mean ± SEM. (Adapted from Müller et al. 20129, reprinted with permission from Elsevier).
Figure 2. How an iontophoretic pipette should look like. A) Infrared CCD image of an iontophoretic pipette compared to a small 5.5 MΩ patch pipette using a 60X objective. B) Iontophoretic pipette with scale using a 60X objective. Calibration: smallest = 10 μm.
Figure 3. Capacitance compensation of the iontophoretic pipette using the build in test-pulse (10 nA, 10 msec, npi electronic, Tamm, Germany). It is important to compensate the capacitance correctly to monitor the right pipette resistance and to ensure fast and accurate neurotransmitter application.
Figure 4. Principles of micro-iontophoresis. A) Schematic drawing of a CA1 pyramidal neuron in whole cell patch-clamp configuration and an iontophoretic pipette filled with glutamate. Glutamate is negatively charged, therefore a positive current applied to the pipette will keep it from leaking out of the pipette: The retain current is positive (left panel). To eject glutamate from the pipette, apply a negative current (right panel). In this way glutamate is forced out of the pipette and can evoke excitatory events in the postsynaptic cell. B) Schematic drawing of CA1 pyramidal neuron in whole cell patch-clamp configuration and an iontophoretic pipette filled with GABA. GABA is positively charged at a low pH. Therefore, a negative current will keep it from leaking out of the pipette (left panel). To eject GABA apply a positive current (right panel). In this way GABA comes out of the pipette and can evoke inhibitory events in the postsynaptic cell.
Figure 5. Good and bad iontophoretic pipettes. A) Representative example of an iontophoretic glutamatergic EPSP generated on a dendritic branch of a CA1 pyramidal neuron. B) Representative example of an iontophoretic dendritic spike generated a dendritic branch in the CA1 area of the hippocampus with ongoing mild glutamate leakage from the pipette tip.
Figure 6. Representative results for single glutamate micro-iontophoresis. A) Schematic drawing of a patched CA1 pyramidal neuron and an iontophoretic pipette filled with glutamate. B) EPSP evoked in a CA1 pyramidal neuron with glutamate iontophoresis. C) Dendritic Na+/Ca2+spike evoked on a proximal dendrite of a CA1 pyramidal neuron, lower trace shows the slope of the voltage trace, peak indicates the peak slope of the dendritic spike. D) When increasing the current applied to the iontophoretic the amplitude of the EPSP will increase until it crosses the action potential threshold.
Figure 7. Representative results for double glutamate micro-iontophoresis at different locations on the dendritic tree. A) Schematic drawing of a patched CA1 pyramidal neuron and two iontophoretic pipettes filled with glutamate, which are positioned on a proximal, and a distal dendrite, respectively. B) Iontophoretic EPSP evoked on a proximal dendrite of a CA1 pyramidal neuron (1). C) Iontophoretic EPSP evoked at a distal dendrite (2).
Figure 8. Representative results for GABA micro-iontophoresis. A) Schematic drawing of a patched CA1 pyramidal neuron and an iontophoretic pipette filled with GABA. B) Iontophoretic IPSP evoked on a proximal dendrite of a CA1 pyramidal neuron. C) Long current injection of systematically changing amplitudes to a CA1 pyramidal neuron via the patch pipette, to determine the reversal potential of the evoked event (current injections from -400 pA to 0 pA). Artifact indicates time-point of GABA iontophoresis. The evoked event indicates a reversal potential of approximately -70 mV (arrow).
Figure 9. Representative results of simultaneous glutamate and GABA iontophoresis to investigate integration of inhibition and excitation. A) Schematic drawing of a patched pyramidal neuron and one pipette filled with glutamate (green) and on with GABA (orange). B) Iontophoretically evoked dendritic spikes alone, in subsequent sweeps, lower traces show dV/dt, peaks indicate dendritic spikes. C) Iontophoretically evoked IPSP alone. D) Both, glutamatergic and GABAergic events together.
Location specificity | Transmitter specificity | Toxicity / side effects | Presynaptic stimulation | Long-term experiment | Costs/complexity | |
Micro- iontophoresis | ++ | +++ | ++ | – | ++ | ++ |
2-photon uncaging | +++ | +++ | + | – | + | + |
Synaptic stimulation | – | – | +++ | +++ | +++ | +++ |
Table 1. Comparison of different techniques. Advantages and disadvantages of techniques to stimulate neurons according to different criteria (- = bad, + = not optimal, ++ = good, +++ = best).
Patch pipettes | Iontophoretic pipettes | |||
Pre-pulls P (A) Single pull | Last Pull P(B) | Pre-pulls P(A) Single Pull | Last Pull P(B) | |
Heat H | 700 | 480 | 510 | 600 |
Force Pre Pull F(TH) | 018 | 035 | 018 | 008 |
Distance Threshold s(TH) | 017 | 012 | 025 | 015 |
Delay Heatstop t(H) | 050 | 030 | 050 | 030 |
Distance Heatstop s(H) | 030 | 000 | 030 | 000 |
Delay F(F1) | 000 | 136 | 000 | 050 |
Force Pull 1 F1 | 000 | 065 | 200 | 400 |
Distance Pull 2 s(F2) | 000 | 005 | 000 | 001 |
Force Pull 2 F2 | 000 | 080 | 000 | 095 |
Adjust (AD) | 121 | 000 | 121 | 000 |
Table 2. Exemplarily puller protocol. For a horizontal puller (DMZ-Universal Puller, Zeitz-Instruments GmbH, Martinsried, Germany), using GB150F-8P filaments (Science Products, Hofheim, Germany) for both patch and iontophoretic pipettes.
Here we explain how to apply fast micro-iontophoresis of neurotransmitters to investigate synaptic integration on dendrites. This technique has been successfully used to investigate glutamatergic and GABAergic synaptic transmission in different brain regions in vitro and in vivo9,20-22. Micro-iontophoresis has been used for more than 60 years, but in early years it was mostly used to either locally apply neurotransmitters and drugs on slow or intermediate timescales23 or for microinjection of substances into cells24.
Micro-iontophoresis became a particularly interesting tool for studying dendritic integration since the introduction of amplifiers, which are equipped with a fast capacitance compensation for high-resistance electrodes10,11. With this improvement it became possible to apply brief rectangular iontophoretic currents resulting in postsynaptic responses, which resembled more realistically the time course of synaptic events10,25.
What are the technical requirements and difficulties to deal with, when establishing micro-iontophoresis? An iontophoretic amplifier is needed that allows for compensation of the high capacitance of the fine iontophoretic pipettes. The correct tuning of the capacity compensation is very important if high speed operation in conjunction with high resistance microelectrodes is required. Uncompensated stray capacitances are charged from the iontophoretic current that is supplied by the instrument, and therefore slows application. Compensating the capacitance properly is crucial and explained in detail in the video. Additionally, it is critical that the optical system gives a good fluorescent image of the dendrite and the iontophoretic pipette without inducing photo-damage of the tissue. Optimally, use a two-photon system and reduce laser power and dwell times as much as compatible with a decent image quality. If a more conventional light source is used, make sure to reduce the exposure time as much as possible, for example, by using mechanical shutters or electrical triggering. Probably the most critical point is the pipette design, which will allow for a defined and specific application of the neurotransmitter used. This step does require some effort and time to find the optimal settings. Here, we present protocols for glutamate and GABA iontophoresis, if other neurotransmitters, blockers or modulators are used, it is necessary that the substance is highly concentrated and even more importantly that it is charged. For example, since GABA has a net charge of zero at a pH of 0, the pH has to be adjusted (see Protocol section 2), resulting in a net positive charge.
When micro-iontophoresis is established, it will provide an extended toolset to study synaptic integration in neurons. It allows stimulating synapses of interest selectively with a particular neurotransmitter. Using a selected neurotransmitter on defined locations, postsynaptic currents and potentials and their propagation can be investigated. Furthermore, it is possible to use multiple iontophoretic electrodes simultaneously to investigate the integration of several glutamatergic inputs or systematically change the relative timing or the strength of events.
Some general critical points have to be considered when using micro-iontophoresis. The profile of neurotransmitter concentration after micro-iontophoresis is different from endogenous release. Murnick and others10 reported that the speed of release from the iontophoresis tip (about 1 msec) is likely to be significantly slower than synaptic release from vesicles, which occurs in fractions of a millisecond (0.2 msec)26. Also, diffusion to and from the synaptic cleft is likely slowing concentration rise and decay of iontophoretically applied neurotransmitters. Furthermore, the volume of ejected neurotransmitter is likely to be higher than physiologically released volumes, however, with high-resistance electrodes, single glutamatergic and GABAergic postsynapses could be activated using micro-iontophoresis 10-12. A spatial selectivity in the range of a few micrometers has also recently been achieved by two-photon uncaging of neurotransmitters 3,4,27.
While considerably more cost intensive, two-photon uncaging has several advantages over micro-iontophoresis. In particular it can be used to release neurotransmitter simultaneously at multiple synaptic sites and does not require the precise positioning of a fine electrode tip. However, it also has some important disadvantages to be considered when selecting a method for a particular experiment. Many caged compounds have unwanted side effects such as the blockade of neurotransmitter receptors28. For example, many glutamate and GABA cages have been reported to interfere with GABAergic inhibition. Also, the relatively high laser power required for two-photon uncaging may result in photo-damage of the postsynaptic neuron, particularly when the stimulation is applied repeatedly over several minutes. Furthermore, while micro-iontophoresis is limited in the number of stimulated sites, these sites can be chosen freely on the whole dendritic tree of a neuron, for example on distal and basal dendrites, to simulate layered synaptic input from different brain regions. Two-photon uncaging, as it is currently used by most groups, will be limited to synaptic sites in a particular focal plane and in the field of view, which depends on the objective used (typically 40X or 60X water immersion). It has to be considered that both techniques always lead to activation of extrasynaptic receptors, which may make the interpretation of the results more difficult.
Another disadvantage of micro-iontophoresis is that only the postsynapse can be activated. If presynaptic function and the role of vesicle-released neurotransmitter need to be set into the experimental focus, local electrical synaptic stimulation may be a method of choice. However, the disadvantages of electrical synaptic stimulation compared to micro-iontophoresis are the unknown location of the activated synapses and the co-activation of axons from different neuronal populations, potentially belonging to other neurotransmitter systems (Table 1).
In summary the most important advantage of micro-iontophoresis is, in our view, that it is possible to use several different neurotransmitters and to study their interaction on neuronal compartments such as dendrites9.
The authors have nothing to disclose.
We thank Hans Reiner Polder, Martin Fuhrmann and Walker Jackson for carefully reading the manuscript. The authors received funding that was provided by the ministry of research MIWF of the state Northrhine-Westfalia (S.R.), the BMBF-Projekträger DLR US-German collaboration in computational neuroscience (CRCNS; S.R.), Centers of Excellence in Neurodegenerative Diseases (COEN; S.R.), and the University of Bonn intramural funding program (BONFOR; S.R.).
Material | |||
Two-photon laser scanning microscope (TRIM Scope II), and Ultima IV, Prairie Technologies, Middleton, Wisconsin) | LaVision Biotec, Bielefeld, Germany | ||
Two-photon laser scanning microscope Ultima IV | Prairie Technologies, Middleton, Wisconsin, USA | ||
Ti:Sapphire ultrafast-pulsed laser | Chameleon Ultra II, Coherent | ||
60X Objective, NA 0.9 | Olympus | ||
Zeiss Axioskop 2 FS upright microscope | TILLPhotonics, Gräfelfing, Germany | ||
Monochromator | TILLPhotonics, Gräfelfing, Germany | ||
Micro-iontophoresis system MVCS-02 | NPI Electronics, Tamm, Germany | ||
Sutter puller P-97 | Sutter Instrument Company, Novato, CA | ||
Glass filaments (150 GB F 8P) | Science Products, Hofheim, Germany | ||
Reagent | |||
Alexa Fluor 488 hydrazide | Molecular Probes life technologies | A-10436 | |
Alexa Fluor 594 | Molecular Probes life technologies | A-10438 | |
NaCl | Sigma Aldrich | S7653 | |
KCl | Sigma Aldrich | P9333 | |
NaH2PO4 | Sigma Aldrich | S8282 | |
NaHCO3 | Sigma Aldrich | S6297 | |
Sucrose | Sigma Aldrich | S7903 | |
CaCl2 | Sigma Aldrich | C5080 | |
MgCl2 | Sigma Aldrich | M2670 | |
Glucose | Sigma Aldrich | G7528 | |
K-Gluconate | Sigma Aldrich | G4500 | |
HEPES-acid | Sigma Aldrich | H4034 | |
Phosphocreatin | Sigma Aldrich | P7936 | |
EGTA | Sigma Aldrich | E3889 | |
Glutamic acid | Sigma Aldrich | G8415 | |
GABA | Sigma Aldrich | A5835 | |
NaOH | Merck | 1.09137.1000 | |
HCl | Merck | 1.09108.1000 |