Retrograde transport of fluorescent dye labels a sub-population of neurons based on anatomical projection. Labeled axons can be visually targeted in vivo, permitting extracellular recording from identified axons. This technique facilitates recording when neurons cannot be labeled through genetic manipulation or are difficult to isolate using ‘blind’ in vivo approaches.
The overall goal of this method is to record single-unit responses from an identified population of neurons. In vivo electrophysiological recordings from individual neurons are critical for understanding how neural circuits function under natural conditions. Traditionally, these recordings have been performed ‘blind’, meaning the identity of the recorded cell is unknown at the start of the recording. Cellular identity can be subsequently determined via intracellular1, juxtacellular2 or loose-patch3 iontophoresis of dye, but these recordings cannot be pre-targeted to specific neurons in regions with functionally heterogeneous cell types. Fluorescent proteins can be expressed in a cell-type specific manner permitting visually-guided single-cell electrophysiology4-6. However, there are many model systems for which these genetic tools are not available. Even in genetically accessible model systems, the desired promoter may be unknown or genetically homogenous neurons may have varying projection patterns. Similarly, viral vectors have been used to label specific subgroups of projection neurons7, but use of this method is limited by toxicity and lack of trans-synaptic specificity. Thus, additional techniques that offer specific pre-visualization to record from identified single neurons in vivo are needed. Pre-visualization of the target neuron is particularly useful for challenging recording conditions, for which classical single-cell recordings are often prohibitively difficult8-11. The novel technique described in this paper uses retrograde transport of a fluorescent dye applied using tungsten needles to rapidly and selectively label a specific subset of cells within a particular brain region based on their unique axonal projections, thereby providing a visual cue to obtain targeted electrophysiological recordings from identified neurons in an intact circuit within a vertebrate CNS.
The most significant novel advancement of our method is the use of fluorescent labeling to target specific cell types in a non-genetically accessible model system. Weakly electric fish are an excellent model system for studying neural circuits in awake, behaving animals12. We utilized this technique to study sensory processing by “small cells” in the anterior exterolateral nucleus (ELa) of weakly electric mormyrid fish. “Small cells” are hypothesized to be time comparator neurons important for detecting submillisecond differences in the arrival times of presynaptic spikes13. However, anatomical features such as dense myelin, engulfing synapses, and small cell bodies have made it extremely difficult to record from these cells using traditional methods11, 14. Here we demonstrate that our novel method selectively labels these cells in 28% of preparations, allowing for reliable, robust recordings and characterization of responses to electrosensory stimulation.
1. Prepare Dye-coated Needles
2. Prepare Animal for Surgery
3. Surgery (Figure 2)
The basic surgical procedure described here is well established and reliably used for blind in vivo recordings in mormyrids16. For other applications, expose the desired regions for labeling and recording. The region containing axon terminals of the cells of interest must be reachable by a dye-coated needle. The region containing more proximal segments of those same axons must have sufficient space above the tissue to accommodate the working distance of the water-immersion lens (2 mm in our case).
4. Retrograde Labeling of Axons of Interest
5. Visualization of Axons of Interest
6. Record Extracellular Activity
7. Termination and Disposal
8. Representative Results
For our particular application, we are interested in studying stimulus coding by central sensory neurons. Successful recordings from labeled axons allow analysis of single-unit responses to sensory stimulation18. Figure 5A shows representative action potentials evoked by transverse electrosensory stimulation using bipolar electrodes located on the insides of the left and right walls of the recording chamber. Spike times can be presented as a spike raster plot (Figure 5B). A 25 msec pre-stimulus recording window shows the low level of spontaneous activity. This particular ELa “small cell” is long-pass tuned to stimulus duration at a stimulus intensity of 6 mV/cm, increasing the number of spikes per repetition as stimulus duration increases (Figure 5C). The mean first spike latency is 4.28 ± 0.16 msec, consistent with the expected latency for small cells in ELa11.
Figure 1. Specifications for a recording chamber that can fit underneath the objective of a fixed-stage epiflourescent microscope. (A) To-scale square recording chamber made from plexiglass showing top, side and back views. Paired sets of stimulating electrodes (asterisks) at the periphery allow for either transverse (red-black) or longitudinal (blue-yellow) stimulation. An additional piece of plexiglass in the corner, with a rubber-lined hole in the center (orange), holds a suction pipette that maintains a constant water level. Two vertical stainless steel posts screwed into the bottom of the chamber (solid green) connect to stainless steel posts (green outline) attached to the platform supporting the fish (light grey, detailed in C) via adjustable disc clamps. A photograph of the chamber is shown below the to-scale drawing. (B) Individual and assembled views of the circular plastic disc clamps used to secure the platform to the vertical posts. Each disc clamp has a groove (green) for a post and a center hole for the tightening screw. Disc clamps are rotated so the grooves are perpendicular to each other. Tightening the screw (red) clamps the posts in place to prevent further vertical and rotational movement of the platform. (C) Front and side to-scale views of the plexiglass platform used to hold the fish in place. The platform is coated with a layer of paraffin wax (blue) that holds wooden dowels (black bars) in place to support the fish. Tubing for respirating the fish passes through a hole in the ‘headboard’ of the platform and ends in a pipette tip placed in the fish’s mouth. A stainless steel head post (gray bar) connects to the platform via a ball joint allowing 360 degree rotation. Stainless steel horizontal posts (green) are screwed into either end of the platform. Click here to view larger figure.
Figure 2. Schematic overview of surgery looking down at the dorsal surface of the head. (A) Make four cuts, in the order indicated, to remove a rectangular piece of skin (red). (B) Extend the opening anteromedially to remove an additional rectangular piece of skin (green). (C) Scrape off any remaining fat or ligaments by moving the scalpel blade as indicated by the arrow and dry the surface completely with Kimwipes and forced air. (D) Glue a stainless steel post to the skull using Super Glue. Scale bar in A applies to A-D. (E) Use a dental drill to make four cuts, in the order indicated, to remove a rectangular piece of bone (blue), exposing the anterior and posterior exterolateral nuclei (ELa and ELp, respectively). Click here to view larger figure.
Figure 3. Fluorescent labeling in the posterior exterolateral nucleus 3 hours after injection of dextran-conjugated Alexa Fluor 568. (A) The anterior and posterior exterolateral nuclei (ELa and ELp, respectively) visualized with bright field illumination from above. Note that the extensive myelination within ELa gives it a relatively bright appearance that distinguishes it from ELp. (B) The same area visualized using epifluorescence viewed through a TRITC filter. (C) A merged image using blue for A (brightfield) and red for B (TRITC). (D) Example of a scaled drawing of ELa and ELp including major blood vessels (red lines) that can be used as landmarks to identify the exact location of labeled axons visible only under high magnification (the exact location of blood vessels varies from fish to fish). Dotted line indicates the border between ELa and ELp. (E) Sample images acquired using a TRITC filter from 5 different preparations illustrating a range of successful labeling patterns of small cell axons and somas in ELa. Click here to view larger figure.
Figure 4. Single-unit extracellular recording from a labeled axon. (A) Recording electrode (arrow head) under positive pressure placed adjacent to a labeled small cell axon in ELa (top) records only edge artifact (arrow heads) in response to a 100 msec 20 mV/cm monophasic, contralateral-positive, transverse square pulse (bottom). (B) Releasing outward pressure from the electrode (arrow head) causes the axon to move slightly towards the electrode (top) but there are still no responses to the stimulus (bottom). (C) Slight negative pressure pulls the axon into the electrode (top, arrow head) and action potentials in response to stimulus onset are now visible (bottom, asterisk). Bottom portions of all three panels are overlaid responses to 20 repetitions of the stimulus. Click here to view larger figure.
Figure 5. Representative results using this technique. (A) 5 sample traces showing action potentials evoked by a 0.1 msec 6 mV/cm monophasic, contralateral-positive, transverse square pulse stimulus. (B) Raster plot showing spike times during 20 repetitions of a 75 msec recording window for the same unit stimulated at time 0 with 6 mV/cm stimuli at the range of durations listed on the right. (C) Duration tuning curve quantifying the responses displayed in the raster as spikes per stimulus repetition. Click here to view larger figure.
Mass (g) | Fork Length (cm) | Body Depth (cm) | |
Mean | 2.42 | 6.20 | 1.14 |
Standard Deviation | 0.64 | 0.52 | 0.18 |
Range | 1.2-4.0 | 5.5-8.4 | 0.9-1.6 |
Table 1. Optimal weight, length and body depth ranges for fish. Optimal weight, fork length (tip of snout to fork of caudal fin) and body depth (maximal dorso-ventral distance in the transverse plane) ranges allowing fish to fit in the recording chamber illustrated in Figure 1. Fish that are too small may be less likely to survive the surgery and will have a small ELp, making dye placement challenging. Fish that are too large will have a large, over-reaching cerebellum that will reduce access to ELa and ELp and may prevent lowering of the high power, water-immersion objective close enough to focus on ELa and ELp.
Application Site | Dye Type | Fish attempted | Label in ELa | Label in ELp | Units attempted | Recordings |
ELa | Alexa Fluor injection | 32 | 26 (81.2%) | 19 (59.4%) | 50 | 4 (8.0%) |
ELa | Alexa Fluor soaked filter paper | 1 | 0 | 0 | 0 | 0 |
ELa | Di-I in DMSO | 8 | 6 (75.0%) | 0 | 0 | 0 |
ELa | Di-O crystals | 5 | 3 (60.0%) | 2 (40.0%) | 9 | 0 |
ELp | Solid Alexa Fluor crystals | 2 | 0 | 2 (100%) | 0 | 0 |
ELp | Alexa Fluor coated tungsten wires | 43 | 29 (67.4%) | 41 (95.3%) | 119 | 26 (21.8%) |
Table 2. Success rates for each dye injection method. Success rates for each dye injection method. Methods are divided based on injection site and dye type. For each method, the total number of fish attempted and the percentage of these experiments that resulted in successful labeling in ELa and ELp is shown. Note that the targeted recording area is the opposite of the application site (bolded boxes). For the injection site, dye uptake was considered successful with labeling of both somas and axons. In contrast, at the recording site, only preparations with labeled axons were counted as successful labeling experiments. The total number of attempted units and the percentage of these units that resulted in successful recordings are also shown.
# of injection sites | Average volume per injection (μl) | Range of volumes per injection (μl) | Average total injection volume (μl) | Range of total injection volumes (μl) | |
Microinjector with Hamilton | 3 or 4 | 0.144 | 0.091 – 0.91 | 0.516 | 0.378 – 0.669 |
Nanoinjector with glass pipette | 2 – 4 | 0.069 (fixed) | Fixed volume injected 1-6 times | 0.621 | 0.414 – 0.966 |
Microinjector with glass pipette | 2 – 6 | 0.093 | 0.058 – 0.202 | 0.360 | 0.252 – 0.540 |
Table 3. Quantities of dye applied for each of the three methods used to inject Alexa Fluor into ELa Quantities of dye applied for each of the three methods used to inject Alexa Fluor into ELa (first method from Table 2). Dye injection into ELa was performed with both a nanoinjector and a microinjector using either a 33 gauge Hamilton syringe needle or a pulled glass capillary pipette. We varied the number of injection sites, the volume per injection and the total volume of dye injection.
Once mastered, this technique will allow one to target identified neurons, including individual axons, for in vivo recordings in many model systems. In addition, this technique allows one to reliably record spike output from neurons with unique anatomical characteristics that make traditional in vivo recording methods challenging. We have utilized this technique to record from ELa “small cells” in mormyrid weakly electric fish. Previous attempts to study the tuning properties of “small cells” were unsuccessful due to challenging recording conditions11, 14. Similar anatomical features create barriers to obtaining single-unit recordings from many different vertebrate auditory and electrosensory neurons8-10. To overcome these challenges in our system, we took advantage of the fact that “small cells” are the only cells in ELa that project to ELp. Thus, retrograde transport of dye placed in ELp limits labeling in ELa to “small cell” somas and axons. Fluorescent labeling of the axons allowed precise electrode placement next to labeled axons, making single-unit recordings from identified cells possible despite inaccessible somas. We attempted somatic recordings, but were unsuccessful, probably due to the surrounding engulfing synapses11,17. However, somatic labeling was clearly visible suggesting that this technique could be used to target somatic recordings in other cell types and other circuits. Fluorescent labeling of neurons through retrograde transport in vivo has been used for guiding targeted recordings in vitro19-21. A similar technique was used for targeted in vivo recordings from motor neurons in zebrafish spinal cord22. Our work represents a novel expansion of this approach, in which both labeling and recording are done in vivo within the brain. Our method demonstrates that in vivo labeling of CNS areas with a retrograde tracer can be expanded to the study of other intact circuits with similarly selective projection neurons. For example, in mammalian auditory processing, the inferior colliculus (IC) serves as an important relay center for inputs from multiple rhombencephalic structures23. Dye injection into the IC would selectively label the projection cells from each of these nuclei. The superior colliculus (SC) serves a similar function for vision24. Spinal cord preparations are particularly well suited for this technique, as the spinal cord is easily accessed, dye injection can occur far from the recording site, and it can be combined with intracellular recording and filling of select neurons to acquire more detailed anatomical information25. Finally, tract-tracing is a well established technique used throughout the central nervous system to map complex circuitry26. Our method can be utilized to add functional information to these studies as has been done with calcium-sensitive indicators in cat visual cortex27.
The surgery, which is well established, reliable, and regularly used for blind in vivo recordings16, must be completed with minimal bleeding and no damage to the surface of the brain to allow the animal and the tissue to survive. With practice, the surgery and dye application can be completed in 30-45 minutes. We successfully labeled “small cell” axons in 67% of the preparations. Most preparations have only 1 or 2 visible labeled axons, but some have as many as 8. Of the 119 labeled units attempted, we obtained single-unit recordings from 26 units distributed over 12 preparations (Table 2). Thus, data were collected from 41% of preparations with labeled axons for an overall success rate of 28%.
The critical aspect of dye application is labeling depth. Shallow insertion of the tungsten wire will result in the dye being washed away. However, if the penetration is too deep, labeled axons will not be visible for targeting. Further, some mechanical damage to the cell must occur for the dye to be adequately taken up25, 28. However, too much damage will kill the cells. We attempted labeling with other dyes and other methods (Table 2), including anterograde labeling through dye injection into ELa paired with recording from labeled axons in ELp (Table 3). We hypothesize that anterograde labeling was not successful because labeling was limited to cells with somatic damage, making them unresponsive. Additionally, pre-synaptic terminals may have been disturbed. By contrast, retrograde labeling minimizes both of these concerns. The amount and location of dye application can be modified according to the particular circuit being studied. Maximal labeling occurs with the greatest dye concentration, which we achieved using coated tungsten wires. However, for labeling axons with deep projections, dye may come off a tungsten needle as it is advanced. In these cases, pressure injection would be more appropriate. Dye uptake and transport are rapid, with labeled axons in our preparation being visible as early as 2 hours post-injection and additional labeled axons appearing as late as 6 hours post-injection. Thus, labeling and recording can be accomplished in a single day, eliminating technical difficulties associated with survival surgery. Timing will vary for each application depending on the distance required for dye transport.
Another critical aspect is electrode placement. It is important to enter the tissue close to the site of the labeled axon to prevent clogging of the tip. For dense tissue such as in ELa, a long, thin shank on the recording electrode minimizes excess movement of surrounding tissue. If a successful recording is not achieved on the first attempt, repeat with fresh electrodes until a recording is obtained or the tissue is disrupted to the point at which the axon is no longer visible. However, it is also important to quickly place the electrode next to the axon to minimize the amount of fluorescent exposure, which can cause phototoxicity, bleaching and may affect physiological properties of the cell29-31.
Once a segment of axon is successfully suctioned into the recording electrode, recordings can be obtained for several hours. If units are consistently lost in less than 1 hour, consider making smaller electrode tips to prevent the axon from slipping out. On the other hand, too small of a tip may result in clogging, low signal-to-noise, or damage to the axon. A steady decrease in spike amplitude and the ‘return’ of a unit with additional suction is an indication that the tip is too large. Too much suction may cause irreparable damage to the axon. One solution is to allow a small leak in the air line so the pressure slowly returns to zero. Rapidly equalizing the pressure will result in a transient relative-outward ‘push’ which may expel the axon.
Although this technique represents a major advantage for obtaining targeted recordings from identified projection neurons, it will not be useful for distinguishing local interneurons, as dye would be taken up by all cell types at the injection site. Theoretically, the use of multiple fluorophores with separate injection sites may allow this method to be expanded. For example, comparison of single- versus double-labeling could be used to distinguish interneurons from projection neurons following dual injections at two points in the circuit32. Similarly, retrograde tracers can be combined with other advanced imaging techniques, such as two-photon imaging, as was done recently in zebra finch High Vocal center (HVc)32. Also, recording regions are limited to those near the surface when using epifluorescence microscopes, as we were only able to resolve 1 μm structures within the first 30 μm of tissue. However, this depth could be extended through the use of other microscopy techniques, such as two-photon microscopy33 or objective-coupled planar illumination microscopy34. Overall, this technique represents an important advancement in the study of neural circuits in vivo because it can be used to record from single neurons in many different circuits in a variety of model systems – including those that are relatively inaccessible.
The authors have nothing to disclose.
Funding provided by the National Science Foundation (IOS-1050701 to B.A.C.), the National Institutes of Health (NS54174 to S.M. and F30DC0111907 to A.M.L-W.), the Uehara Memorial Foundation and the Japan Society for the Promotion of Science (G2205 to T.K.). We thank Julian Meeks for his support and guidance on the topic of extracellular axonal recordings. We thank Carl Hopkins for providing a prototype recording chamber.
Name of the reagent | Company | Catalogue number | コメント |
Tricaine Methanesulfonate | Sigma-Aldrich | E10521 | MS-222 |
Gallamine Triethiodide | Sigma-Aldrich | G8134 | Flaxedil |
Lidocaine Hydrochloride | Sigma-Aldrich | L5647 | |
Hickman’s Ringer Solution | NA | NA | NaCl (6.48 g/l), KCl (0.15 g/l), CaCl2•2H20 (0.29 g/l), MgSO4 (0.12 g/l), NaHCO3 (0.084 g/l), NaH2PO4 (0.06 g/l) |
Peristaltic Pump | Gilson or Rainin | Minipulse 3 Model 312; RP-1 | 10.0 ± 1.0 rpm, Alternatively, a gravity-fed line with a flow-meter |
Dissection Microscope | Nikon | SM2645 | |
Super Glue | Super Glue Corporation | SGH2 | 2g tube |
Omni Drill 35 | World Precision Instruments | 503-598 | |
Ball Mill Carbide Drill Bit #1/4 | World Precision Instruments | 501860 | 0.19 DIA (bit diameter = 0.48 mm) |
Low Temp Cautery Kit | World Precision Instruments | 500391 | |
Manual Micromanipulator | World Precision Instruments | M3301R | |
Dextran Conjugated Alexa Fluor 568 | Invitrogen | D-22912 | 2mM concentration; 10,000MW The choice of dye wavelength should be selected to match the microscope filter settings |
Epifluorescent Microscope | Nikon | E600 FN | A remote focus accessory is helpful for fine focus TRITC filter – or appropriate filter to match focal planes for different dye wavelengths |
Low Power Objective | Nikon | 93182 | CFI Plan Achromat Series, 4X N.A. 0.1, W.D. 30mm |
High Power Objective | Nikon | 93148 | CFI Fluor Series, 40X WI N.A. 0.8, W.D. 2.0 mm |
White Light Source | Dolan-Jenner | Model 190 | Fiber Optic Illuminator |
Fluorescent Light Source | Lumen Dynamics | X-Cite 120Q | |
Low-light Level Camera | Photometrics | CoolSnap ES | |
Digital Manometer | Omega Engineering | HHP-201 | |
Motorized Micromanipulator | Sutter Instruments | MP-285 | |
Headstage | Molecular Devices | CV-7B | Axon Instruments |
Amplifier | Molecular Devices | MultiClamp 700B | Axon Instruments |
Data Acquisition System | Molecular Devices | Digidata 1322A | Axon Instruments |
Isolated Pulse Stimulator | A-M Systems | 2100 | |
Flaming/Brown Micropipette Puller | Sutter Instruments | P-97 | Program settings for our application: Heat: ramp + 1, Pull: ‘0’, Velocity: 60, Time: 90 Box filament |
Pipette Glass | World Precision Instruments | 1B100F-4 | Borosilicate capillary glass with filament (1 mm OD, 0.58 mm ID) |