Source: Cresci, A., et al. Assessing the Influence of Personality on Sensitivity to Magnetic Fields in Zebrafish. J. Vis. Exp. (2019)
This video describes the rheotaxis assay in zebrafish. The method involves the measurement of orientation behavior of zebrafish in response to different water flow rates under the influence of different magnetic fields.
1.Set up of the Magnetic Field with the One-dimensional Magnetic Field Manipulation
2. Set Up of the Magnetic Field with the Three-dimensional Magnetic Field Manipulation
3. Test of the Zebrafish Rheotaxis in the Flow Chamber
Figure 1: Setup for magnetic field control. (A) Rendering of the swimming tunnel with a solenoid for the induction of a static, horizontal magnetic field within the tunnel. The solenoid (0.83 turns/cm) is connected to a power unit and it generates fields in the range of ±250 µT (intensity range that includes the earth’s magnetic field range). On the right-hand side, a photo of the solenoid tunnel connected to the swimming apparatus is shown. The tunnel is made of acrylic and it has two perforated acrylic plates placed at the water inlet, which guarantee the flow to be close to laminar. (B) Diagram and photo of the three orthogonal Helmholtz pairs set for the control of the magnetic field in the geomagnetic range of intensities. The magnetic field probe, the CPU, the digital-to-analog converter, and the coil drivers used to close the loop are also shown. Each pair of coils is composed of two circular coils with a radius (r) of 30 cm and N = 50 turns of AWG-14 copper wires. A three-axes magnetometer (sensor) with selectable scale (± 88 µT to ± 810 µT) is placed close to the center of the coil set. The sensor range is set to values ranging to ±130 µT. These values were also used for the measurements described in the representative results (in these conditions, the nominal sensor resolution is about 0.1 µT). The intensity and the direction of the magnetic field are controlled with a digital feedback system. The sensor measures the three components of the magnetic field vector (the three axes), and the corresponding error signals are extracted. Then, the correction signals are generated by a simple integrator filter. The digital correction signals are converted to voltage by a digital-to-analog converter and amplified by a suitable coil driver. These last signals are used to drive the Helmholtz pairs. The sampling frequency is fixed to 5 Hz and the unity gain frequency of the loops is about 0.16 Hz. Once the currents in the Helmholtz pairs of the coils are set, the total magnetic field varies less than 2% from its mean intensity value in the central cubic volume (with edge [L] = 10 cm) of the coils. During the measurements, the magnetic field rms is less than 0.2 µT. In both the setups (panels A and B) a static electric field is generated by the current in the coils producing the magnetic field. The intensity of the electric field is about 0.4 V/m when the maximum current is applied; this value is negligible compared to natural or artificial static fields present in the environment whose intensity is of the order of 1 kV/m.
Figure 2: Diagram of the flow rates used during the tests to determine the rheotactic threshold of zebrafish. The flow during the 1 h acclimation period was enough to guarantee an adequate oxygen supply to the animals. It can be assumed that, with this design, oxygen supply is never a limit, even in the first 10 min step with flow 0. Indeed, with an oxygen content of water at 27 °C of about 7.9 mg/L and an animal oxygen consumption of 1 mg/h.g (an excess approximation for zebrafish oxygen consumption both under routine conditions and at low-speed swimming), it is possible to calculate that, in the absence of flow, the Po2 in the flume will not decrease more than 2% per animal, remaining well above the critical Po2 (about 40 torr for zebrafish).
9500 G meter | FWBell | N/A | Gaussmeter, DC-10 kHz; probe resolution: 0.01 μT |
AD5755-1 | Analog Devices | EVAL-AD5755SDZ | Quad Channel, 16-bit, Digital to Analog Converter |
ALR3003D | ELC | 3.76024E+12 | DC Double Regulated power supply |
BeagleBone Black | Beagleboard.org | N/A | Single Board Computer |
Coil driver | Home made | N/A | Amplifier based on commercial OP (OPA544 by TI) |
Helmholtz pairs | Home made | N/A | Coils made with standard AWG-14 wire |
HMC588L | Honeywell | 900405 | Rev E Digital three-axis magnetometer |
MO99-2506 | FWBell | 129966 | Single axis magnetic probe |
Swimming apparatus | M2M Engineering Custom Scientific Equipment | N/A | Swimming apparatus composed by peristaltic pump and SMC Flow switch flowmeter with digital feedback |
TECO 278 | TECO | N/A | Thermo-cryostat |